

Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Intel® Composer XE

Introduction to Vectorization

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

2

Agenda

• Introduction

• Vector Code Generation

• Compiler Switches for Automatic Vectorization

• Validating Success of Automatic Vectorization

• When Vectorization fails

– Data Dependence

– Alignment

– Others like Non-Unit Stride Access, Function Calls, …

• Vectorization of special program constructs

– Idiom Recognition

– Complex data type

• HLO Loop Transformations

• Summary, References

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

3

Introduction
Vector Processing

– A specific case of data level parallelism (DLP)

– Same operation simultaneously executed on N >1 elements
of a vector – a one-dimensional array of scalar data objects
like integers, floats, etc

– extends scalar processing to parallel execution

– We will call the number of elements in the vector VL (
vector length)

+

r1 r2

r3

add.d r3, r1, r2

v1 v2

v3

+

VL =

vector

length addvec.d v3, v1, v2

Scalar
Processing

Vector
Processing

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

4

SIMD Execution

– For the architecture we look at vector processing is mainly
SIMD (Single Instruction Multiple Data) execution:

– the vector operation is one single machine instruction

– the vectors have a fixed short length of VL=2,4,8,16

– The execution on all elements of the vector is synchronously

– All results are available at the same time

– SIMD enhancements in processors hardware relevant for
our target platforms

– 64 bit Multi-Media Extension – MMX™

– 128 bit Intel® Streaming SIMD Extension – Intel® SSE

– 256 bit Intel® Advanced Vector Extensions – Intel® AVX

– 512 bit vector instruction set extension of Intel® Many
Integrated Core Architecture – Intel® MIC

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

5

SIMD Types in Processors from Intel [1]

X4

Y4

X4opY4

X3

Y3

X3opY3

X2

Y2

X2opY2

X1

Y1

X1opY1

0 64

X4

Y4

X4opY4

X3

Y3

X3opY3

X2

Y2

X2opY2

X1

Y1

X1opY1

0 128

MMX™
Vector size: 64bit
Data types: 8, 16 and 32 bit integers
VL: 2,4,8
For sample on the left: Xi, Yi 16 bit
integers

Intel® SSE
Vector size: 128bit
Data types:
 8,16,32,64 bit integers
 32 and 64bit floats
VL: 2,4,8,16
Sample: Xi, Yi bit 32 int / float

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

6

SIMD Types in Processors from Intel [2]

 Intel® AVX
Vector size: 256bit
Data types: 32 and 64 bit floats
VL: 4, 8, 16
Sample: Xi, Yi 32 bit int or float

Intel® MIC
Vector size: 512bit
Data types:
 32 and 64 bit integers
 32 and 64bit floats
 (some support for
 16 bits floats)
VL: 8,16
Sample: 32 bit float

X4

Y4

X4opY4

X3

Y3

X3opY3

X2

Y2

X2opY2

X1

Y1

X1opY1

0 127

X8

Y8

X8opY8

X7

Y7

X7opY7

X6

Y6

X6opY6

X5

Y5

X5opY5

128 255

X4

Y4

…

X3

Y3

…

X2

Y2

…

X1

Y1

X1opY1

0

X8

Y8

X7

Y7

X6

Y6

...

X5

Y5

…

255

…

…

…

…

…

…

…

…

…

X9

Y9

X16

Y16

X16opY16

…

…

…

...

…

…

…

…

…

511

X9opY9 X8opY8 …

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

7

Extending SIMD to Multiple Cores

• The availability of more and more
cores in modern processors offers
the opportunity to use these cores
to implement vector processing in
a new way:

– Multiple cores simultaneously
operate on the data elements of
“long” vectors

– Typically – but not necessarily- all
cores execute the same SIMD
instruction

– Semantically this execution model
is implemented as a deterministic,
race-free execution model –
presented to the developer not
differently than traditional SIMD
processing

integer a[16],b[16],c[16];

c[:] = a[:] + b[:];

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

8

We will Focus on SSE from now on

• MMX™ has very limited relevance today due to SSE being
faster, more flexible, using twice the register size and being
available in close to all x86 processors today

– And MMX-vectorization is not supported anymore in current
compilers from Intel

• The content of the following training material is valid for
Intel® AVX as it is for Intel® SSE. We will mention some
difference where appropriate

• The multi-core vector execution model initially will be
exploited by new parallel programming language features &
models; for now not by explicit or compiler-guided
vectorization

While we will focus on Intel® SSE from now on, the
concepts and ideas can be mapped to all the other

vector processing models mentioned

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

9

Agenda

• Introduction

• Vector Code Generation

• Compiler Switches for Automatic Vectorization

• Validating Success of Automatic Vectorization

• When Vectorization fails

– Data Dependence

– Alignment

– Others like Non-Unit Stride Access, Function Calls, …

• Vectorization of special program constructs

– Idiom Recognition

– Complex data type

• HLO Loop Transformations

• Summary, References

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

10

Vectorization

128-bit Registers

A[3] A[2]

B[3] B[2]

C[3] C[2]

+ +

A[1] A[0]

B[1] B[0]

C[1] C[0]

+ +

for (i=0;i<MAX;i++)

 c[i]=a[i]+b[i];

Transforming sequential code to exploit the vector
(SIMD, SSE) processing capabilities

• Manually by explicit source code modification
• Automatically by tools like a compiler

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

11

Scalar and Packed SSE Instructions

The “vector” form of SSE instructions operating on multiple
data elements simultaneously are called packed – thus
vectorized SSE code means use of packed instructions

• Most of these instructions have a scalar version too operating
only one element only

X4 X3 X2 X1addY1

X4 X3 X2 X1

Y4 Y3 Y2 Y1

X4opY4 X3opY3 X2opY2 X1addY1

X4 X3 X2 X1

Y4 Y3 Y2 Y1

addss Scalar Single-FP Add

 single precision FP data

 scalar execution mode

addps Packed Single-FP Add

 single precision FP data

 packed execution mode

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

12

Two Key Decisions to be Made :

1. How do we introduce the vector code ?

• Our key focus will be automatic vectorization by the
Intel® Compilers but there are other ways too

2. How do we deal with the multiple SIMD
instruction set extensions like SSE, SSE2, SSE3,
SSSE3, SSE4.1, SSE4.2, AVX …?

• Each instruction set extension includes all others released
before. Thus we should use the latest one supported

• In case we know the target platform to have one specific
processor model, it is a simple decision

• Otherwise, run-time processor dispatching should be an
option to select the appropriate path for the given
architecture

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

13

Many Ways for SSE Vectorization

Assembler code (addps)

Vector intrinsic (mm_add_ps())

SIMD intrinsic class (F32vec4 add)

Compiler: Auto vectorization hints
(#pragma ivdep, …)

Programmer control

Ease of use Compiler: Fully automatic vectorization

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

14

Continued by

• Intel® AES New Instructions - Intel® AES-NI (2009)

• Intel® Advanced Vector Extensions – Intel® AVX (2010/11)

Refresh: Intel Instruction Set Extensions

70 instr

Single-
Precision
Vectors

Streaming
operations

144 instr

Double-
precision
Vectors

8/16/32

64/128-bit
vector
integer

13 instr

Complex
Data

32 instr

Decode

47 instr

Video

Graphics
building
blocks

Advanced
vector instr

SSE

1999

SSE2

2000

SSE3

2004

SSSE3

2006

SSE4.1

2007

SSE4.2

2008

8 instr

String/XML
processing

POP-Count

CRC

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

15

static double A[1000], B[1000],

 C[1000];

void add() {

 int i;

 for (i=0; i<1000; i++)

 if (A[i]>0)

 A[i] += B[i];

 else

 A[i] += C[i];

}

Selecting Right Extensions makes a
Difference !

.B1.2::

 movaps xmm2, A[rdx*8]

 xorps xmm0, xmm0

 cmpltpd xmm0, xmm2

 movaps xmm1, B[rdx*8]

 andps xmm1, xmm0

 andnps xmm0, C[rdx*8]

 orps xmm1, xmm0

 addpd xmm2, xmm1

 movaps A[rdx*8], xmm2

 add rdx, 2

 cmp rdx, 1000

 jl .B1.2

.B1.2::

 movaps xmm2, A[rdx*8]

 xorps xmm0, xmm0

 cmpltpd xmm0, xmm2

 movaps xmm1, C[rdx*8]

 blendvpd xmm1, B[rdx*8], xmm0

 addpd xmm2, xmm1

 movaps A[rdx*8], xmm2

 add rdx, 2

 cmp rdx, 1000

 jl .B1.2

.B1.2::

 vmovaps ymm3, A[rdx*8]

 vmovaps ymm1, C[rdx*8]

 vcmpgtpd ymm2, ymm3, ymm0

 vblendvpd ymm4, ymm1,B[rdx*8], ymm2

 vaddpd ymm5, ymm3, ymm4

 vmovaps A[rdx*8], ymm5

 add rdx, 4

 cmp rdx, 1000

 jl .B1.2 AVX SSE4.1

SSE2

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

16

Sample for using SSE Intrinsics
Conditions without Jumps

for (i=0,…) R[i] = (A[i]<B[i])? C[i]:D[i];

-3.0 3.0

-5.0 5.0

…00000000 …11111111

cmplt

c1 c0

…00000000 c0

and

d1 d0

d1 …00000000

nand

d1 c0

or

A

B

Result R

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

17

• Intrinsics or SIMD Vector Classes should be preferred to

explicit assembler coding

– Similar performance, very close to best manually written

assembler code

– Hides many details like register allocation and scheduling

– Intrinsics more portable and supported by all popular compilers !

 // R[i] = (A[i] < B[i])? C[i] : D[i]

 __m128d mask = _mm_cmplt_pd(a, b);

 r = _mm_or_pd(

 _mm_and_pd (mask, c),

 _mm_nand_pd(mask, d)

);

Implementation Using Intrinsics

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

18

Manual Processor Dispatch

• Intel® C++ Compiler provides API to implement
one function in specific, explicit versions for
multiple Intel® processors architectures

• The processor architectures are identified by a
cpuid-keyword like core_i7_sse4_2 for the Intel®
Core™ i7 processor architecture

• Two extensions to function declarations:

– To define the routine being „dispatched‟ and the
processor architecture list:

 __declspec(cpu_dispatch(cpuid-list)) func(..)

– To define the individual implementations:

 __declspec(cpu_specific(cpuid)) func(..)

• For more details and example, see article on
software.intel.com

http://software.intel.com/en-us/articles/how-to-manually-target-2nd-generation-intel-core-processors/

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

19

Agenda

• Introduction

• Vector Code Generation

• Compiler Switches for Automatic Vectorization

• Validating Success of Automatic Vectorization

• When Vectorization fails

– Data Dependence

– Alignment

– Others like Non-Unit Stride Access, Function Calls, …

• Vectorization of special program constructs

– Idiom Recognition

– Complex data type

• HLO Loop Transformations

• Summary, References

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

20

Compiler Based Vectorization
Extension Specification

Feature Extension

Intel® Streaming SIMD Extensions 2 (Intel® SSE2) as available
in initial Pentium® 4 or compatible non-Intel processors

SSE2

Intel® Streaming SIMD Extensions 3 (Intel® SSE3) as available
in Pentium® 4 or compatible non-Intel processors

SSE3

Intel® Supplemental Streaming SIMD Extensions 3 (Intel®

SSSE3) as available in Intel® Core™2 Duo processors

SSSE3

Intel® SSE4.1 as first introduced in Intel® 45nm Hi-K next
generation Intel Core™ micro-architecture

SSE4.1

Intel® SSE4.2 Accelerated String and Text Processing

instructions supported first by by Intel® Core™ i7 processors
SSE4.2

Extensions offered by Intel® ATOM™ processor : Intel® SSSE3
(!!) and MOVBE instruction

SSE3_ATOM

Intel® Advanced Vector Extensions (Intel® AVX) as available in
2nd generation Intel Core processor family

AVX

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

21

Basic Vectorization – Switches [1]

{L&M} -x<extension> {W}: /Qx<extension>
• Targeting Intel® processors - specific optimizations for Intel® processors

• Compiler will try to make use of all instruction set extensions up to and
including <extension>; for Intel® processors only !

• Processor-check added to main-program

• Application will not start (will display message), in case feature is not available

{L&M}: -m<extension> {W}: /arch:<extension>
• No Intel processor check

• Does not perform Intel-specific optimizations

• Application is optimized for and will run on both Intel and non-Intel processors

• Missing check can cause application to fail in case extension not available

{L&M}: -ax<extension> {W}: /Qax<extension>
• Dual-code paths – a „generic‟ and „optimized‟ path

• „processor-specific‟ path for Intel® processors defined by <extension>

• „default‟ code path defaults to –msse2 (Windows: /arch:SSE2)
– The „default‟ code path can be modified by –m or –x (/Qx or /arch) switches

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

22

Basic Vectorization – Switches [2]

The default now is –msse2 (Windows: /arch:SSE2)

• Activated implicitly for –O2 or higher

• Implies the need for a target processor with Intel® SSE2

• Use –mia32 (Windows /arch:IA32) in case target processor misses
SSE2 (Intel® Pentium™ 3 processor for example)

Special switch -xHost (Windows: /QxHost)

• Compiler checks host processor and makes use of „latest‟ instruction
set extension available

• Avoid for builds being executed on multiple, unknown platforms

Some support for combination of -x<ext1> and -ax<ext2>
switches (Windows: /Qx<ext1> and /Qax<ext2>)

• Can result in more than 2 code paths

• Use ext1 = ia32 in case „generic‟ code path should support too very
early processors not supporting SSE2 (e.g. Intel® Pentium™ 3)

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

23

Vectorization – More Switches and Directives

Disable vectorization
• Globally via switch: {L&M}: -no-vec {W}: /Qvec-

• For a single loop: directive novector

– Disabling vectorization here means not using packed SSE/AVX
instructions. The compiler still might make use of the corresponding
instruction set extensions

Enforcing vectorization for a loop - overwriting the compiler

heuristics : #pragma vector always

– will enforce vectorization even if the compiler thinks it is not
profitable to do so (e.g due to non-unit strides or alignment issues)

– Will not enforce vectorization if the compiler fails to recognize this
as a semantically correct transformation

– Using directive #pragma vector always assert will print error

message in case the loop cannot be vectorized and will abort
compilation

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

24

Vectorization Switches – Some Notes

• Former vectorization switches like –xW, /QxT, /QaxP etc are
considered „deprecated‟ and will not be supported anymore in
the future

– See appendix or compiler documentation for mapping between old
and new names

• It is not possible anymore to generate vector code exclusively
for the initial SSE (32 bit FP) instruction set (introduced by
Intel® Pentium™ 3 processor)

• The instruction set extension name for Intel® Atom™
processors (SSE3_ATOM) is misleading: Since the architecture
supports up to Intel® SSSE3, e.g. switch -xSSE3_ATOM will
make use of SSSE3 too

– In case the code should be optimized for Intel® Atom processors
but should run too on all processors supporting up to SSSE3, add
option –minstruction=nomovbe (Windows: /Qinstruction:nomovbe)
to avoid the use of the Atom-specific instruction MOVBE

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

25

Student Exercise # 1
Which Loops will Vectorize ?

#01: for (j=1; j<MAX; j++) a[j]=a[j-n]+b[j];

#02: for (int i=0; i<SIZE; i+=2) b[i] += a[i] * x[i];

#03: for (int j=0; j<SIZE; j++)

 for (int i=0; i<SIZE; i++)

 b[i] += a[i][j] * x[j];

#04: for (int i=0; i<SIZE; i++)

 b[i] += a[i] * x[index[i]];

#05: for (j=1; j<MAX; j++) sum = sum + a[j]*b[j]

#06: for (int i=0; i<length; i++)

 if (s >= 0)

 x2[i] = (-b[i]+sqrt(s))/(2.*a[i]);

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

26

Student Exercise

Sample program showing effects when compiling for
difference instruction set extensions

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

27

Agenda

• Introduction

• Vector Code Generation

• Compiler Switches for Automatic Vectorization

• Validating Success of Automatic Vectorization

• When Vectorization fails

– Data Dependence

– Alignment

– Others like Non-Unit Stride Access, Function Calls, …

• Vectorization of special program constructs

– Idiom Recognition

– Complex data type

• HLO Loop Transformations

• Summary, References

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

28

Validating Vectorization Success

• Assembler code inspection
– Assembler listing: {L&M}: –S and {W}: /Fa

– Most reliable way and gives all details of course

– Check for scalar or packed instructions
– Assembler listing contains source line numbers mapping generated

code to loops in source code

• Optimization report of “High-Performance-Optimizer” (HPO)
phase
– {L&M}: -opt-report<N> -opt-report-phasehpo

– {W}: /Qopt-report:<N> /Qopt-report-phase:hpo

– N=1,2,3 specifies level of detail, N=2 is default

– We will come back to the opt-report switch later again

• Vectorization report

• Dynamically counting the number of executed packed SSE
instructions using tools like Intel® VTune Amplifier™ profiler

– E.g. using performance monitoring event
FP_COMP_OPS_EXE.SSE_FP_PACKED on Intel® Core™ i7 processors

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

29

Vectorization Report

• Provides details on vectorization success & failure
– L&M: -vec-report<n>, n=0,1,2,3,4,5

– W: /Qvec-report<n>, n=0,1,2,3,4,5

novec.f90(38): (col. 3) remark: loop was not vectorized: existence of

vector dependence.

novec.f90(39): (col. 5) remark: vector dependence: proven FLOW

dependence between y line 39, and y line 39.

novec.f90(38:3-38:3):VEC:MAIN_: loop was not vectorized: existence of

vector dependence

35: subroutine fd(y)

36: integer :: i

37: real, dimension(10), intent(inout) :: y

38: do i=2,10

39: y(i) = y(i-1) + 1

40: end do

41: end subroutine fd

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

30

Diagnostic Level of Vectorization Switch
L&M: -vec-report<N> W: /Qvec-report<N>

Note:
– In case inter-procedural optimization (-ipo or /Qipo) is

activated and compilation and linking are separate
compiler invocations, the switch needs to be added to the
link step

N Diagnostic Messages

0 No diagnostic messages; same as not using switch and thus default

1 Report about vectorized loops– default if switch is used but N is
missing

2 Report about vectorized loops and non-vectorized loops

3 Same as N=2 but add add information on assumed and proven
dependencies

4 Report about non-vectorized loops

5 Same as N=4 but add detail on why vectorization failed

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

31

Agenda

• Introduction

• Vector Code Generation

• Compiler Switches for Automatic Vectorization

• Validating Success of Automatic Vectorization

• When Vectorization fails

– Data Dependence

– Alignment

– Others like Non-Unit Stride Access, Function Calls, …

• Vectorization of special program constructs

– Idiom Recognition

– Complex data type

• HLO Loop Transformations

• Summary, References

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

32

When Vectorization Fails …

• Most frequent reason: Dependence
– Simplified: Loop iterations must be independent

• Many other potential reasons
– Alignment

– Function calls in loop block

– Complex control flow / conditional branches

– Loop not “countable”
– E.g. upper bound no run time constant

– Not inner loop
– Outer loop of nest cannot be vectorized

– Mixed data types (many cases now handled successfully)

– Non-unit stride between elements

– Loop body too complex– register pressure

– Vectorization seems inefficient

– Many more … but less likely too occur

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

33

Dependence Terminology

Dependence is a key term for vectorization:
– Vectorization is a transformation changing the execution

order of statements

– The execution order of statements as defined by the
program source code (“textual order”) can be changed as
long as the dependencies between all statements are
preserved

A dependence either is a data or control dependence

S1 A = 3.0

S2 B = 4.0

S3 C = sqrt(A**2, B**2)

S1 if (T != 0)

S2 A = A / T

Data dependence from S1
to S3 and from S2 to S3

Control dependence from
S1 to S2

Control dependencies in loops frequently can be converted to data
dependencies or can be eliminated completely - we will come back to this later.

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

34

Data Dependence

Definition of data dependencies
– There is a data dependence from statement S1 to S2

statement (written S1 S2) if and only if :

– There is a potential execution flow from S1 to S2

– S1 and S2 reference a common memory location and
either S1 or S2 write to it

– Note: S1 and S2 can be the very same statement

Data dependence classification:
 S1

F S2 : S1 writes, S2 reads : Flow Dependence

 S1
A S2 : S1 reads, S2 writes : Anti Dependence

 S1
O S2 : S1 writes, S2 writes: Output Dependence

S1 X = …

S2 … = X
S1 … = X

S2 X = …

S1 X = …

S2 X = …

S1
F

 S2 S1
A S2 S1

O S2

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

35

Data Dependence in Loops

Dependencies in loops are most interesting for us since
vectorization almost exclusively is applied to loops

– Dependencies in loops become more obvious by
virtually unrolling the loop:

 DO I = 1, N

S1: A(I+1) = A(I) + B(I)

 ENDDO

S1 A(2) = A(1) + B(1)

S1 A(3) = A(2) + B(2)

S1 A(4) = A(3) + B(3)

S1 A(5) = A(4) + B(4)

 …

S1
F

 S1

In case the dependency requires execution of more than
one loop iteration to exist, we call it loop-carried
dependence. Otherwise loop-independent dependence

 DO I = 1, 10000

S1 A(I) = B(I) * 17

S2 X(I+1) = X(I) + A(I)

 ENDDO

(S1
F S2) is a loop-independent

dependence

(S2

F S2) is loop-carried dependence

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

36

Student Exercise # 2
Find (if any) all Dependencies in these Samples

for (i=0;i<MAX-2,i++)

S: A[i+2]=A[i] + 1;

for (i=0;i<MAX,i++)

S: A[i+1,j] = A[i,k] + B;

for (i=1;i<MAX,i++)

{

S1: A[i]=A[i-1] * 2;

S2: B = A[i-1];

}

for (i=0;i<MAX-1,i+=2)

S: A[i+1]=A[i] + 1;

Dependencies? Type ?

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

37

Dependence & Vectorization

• Vectorization of a loop is similar to parallelization -
executing the loop iterations in parallel (e.g. via OpenMP
threads). However it is not identical:
– Parallelization requires all iterations to be independent: Thus

loop-carried dependencies are not permitted; loop-independent
dependencies are ok

– Vectorization is applied individually to each instruction of the loop
body. That is we execute the first instruction in parallel for multiple
iterations, then the second in parallel for multiple iterations, …

– For a loop body with a single statement only, this is identical to
parallelization

– In case we have multiple instructions, it can be very different
however

DO I=1,N

 A(I+1) = B(I) + C

 D(I) = A(I) + E

END DO

Loop can not be parallelized but
can be vectorized to :

A(2:N+1) = B(1:N)+C

D(1:N) = A(1:N) + E

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

38

Key Theorem for Vectorization

Sample:

DO I=1,N

 A(I) = A(I+3) + C

END DO

A loop can be vectorized if and only if there is no cyclic
dependency chain between the statements of the loop
body
– For the formal proof, we refer to the literature – see reference [3]

– The theorem takes into account, that certain semantic-preserving
reordering transformations can be applied (e.g. loop distribution)

– The theorem assumes an “unlimited” vector length VL. In case VL
is fixed to some constant 2,4,8, … like we have for SSE/AVX,
loop carried dependencies requiring VL+1 or more iterations to
exist, might be ignored.

– Thus in some cases vectorization for SSE/AVX might be valid
while the theorem says no !

Although we have a cyclic
dependency chain, the loop can be
vectorized for SSE in case data type
is double precision float but not for
single precision float

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

39

Dealing with Dependencies #1
Hints to the Compiler

• Many dependencies assumed by compiler are false
dependencies caused by unresolved memory
disambiguation
– The compiler has to be conservative and has to assume

the worst case regarding “aliasing”

// Sample: Without additional information (like inter-procedural

// knowledge) compiler has to assume „a‟ and „b‟ to alias

void scale(int *a, int *b)

{

 for (int i=0; i<10000; i++) b[i] = z*a[i];

}

• Many directives, switches and attributes to pass
“disambiguation hints” to compiler
– Programming language and operating system specific

– Use with care: The compiler might generate incorrect
code in case the hints are not fulfilled !

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

40

Disambiguation Hints
The “restrict” Keyword for Pointers

void scale(int *a, int * restrict b)

{

 for (int i=0; i<10000; i++) b[i] = z*a[i];

}

// two-dimension example:

void mult(int a[][NUM],int b[restrict][NUM]);

{L&M}: -restrict {W}: /Qrestrict

{L&M}: -std=c99 {W}: /Qstd=c99
– Assertion to compiler, that only the pointer or a value based

on the pointer - such as (pointer+1) - will be used to
access the object it points to

– Only available for C, not C++

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

41

Disambiguation Hints [C/C++]
A few Selected Directives and Switches

IVDEP directive
– “Ignore Vector Dependencies” - compiler will ignore assumed but

not proven dependencies for loop following directive

– In case used together with switch –ivdep-parallel (/Qivdep-
parallel), only loop-carried dependencies are ignored

Assume no aliasing at all
– {L&M}: -fno-alias {W}: /Oa

Assume ISO C Standard aliasing rules
– {L&M}: -ansi-alias {W}: /Qansi-alias

– A pointer can be de-referenced only to an object of the same type
or compatible type

No aliasing for function arguments
– {L&M}: -fargument-noalias {W}: /Qalias-args-

– For each given function, the arguments of this function don‟t refer
to a common memory object

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

42

Disambiguation Hints [Fortran]
A few Selected Directives and Switches

IVDEP directive
– “Ignore Vector Dependencies” - compiler will ignore assumed but

not proven dependencies for loop following directive

– In case used together with switch –ivdep-parallel (/Qivdep-
parallel), only loop-carried dependencies are ignored
– In Fortran this is identical to “cDEC$ IVDEP:LOOP”

Assume no aliasing at all
– {L&M}: -fnoalias {W}: /Fa

Assume Fortran Standard aliasing rules
– {L&M}: -ansi-alias {W}: /Qansi-alias

– Different from C/C++, this is default

– the semantic is different from C/C++ and not only cover pointers

No aliasing for function arguments
– {L&M}: -fargument-noalias {W}: /Qalias-args-

– For each given function, the arguments don‟t alias

No aliasing of “Cray-Pointers”
– {L&M}: -safe-cray-pointers {W}: /Qsafe-cray-pointers

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

43

Dealing with Dependencies #2

• Dynamic data dependency analysis
– The compiler can (!) use run-time checks to test for aliasing

– E.g. Array A[La:Ua], B[Lb:Ub] overlap La<Ub && Lb<Ua

– The outcome of test is used to execute a vectorized or scalar
version of the loop (“Loop Versioning”)

– The heuristic of compiler implements a balance between
overhead of testing and performance gains
– E.g. for an assignment

 A[..] = B1[…] + B2[…]+ … + BN[…]

 the versioning might be done for N=2 but not for N=5

– Use switch -opt-multi-version-aggressive (/Qopt-multi-version-
aggressive for Windows) to change heuristic

• Inter-procedural Dependency Analysis
– Can improve dependence analysis accuracy considerably

– Activated by “inter-procedural optimization”: -ipo (/Qipo for Windows)
– For optimization level 2, 3, file-local IPO is on by default

– Definitions & allocation of function arguments might become visible

– In case loop body has function call, references in the called function to
global variables and actual arguments can be analyzed

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

44

Agenda

• Introduction

• Vector Code Generation

• Compiler Switches for Automatic Vectorization

• Validating Success of Automatic Vectorization

• When Vectorization fails

– Data Dependence

– Alignment

– Others like Non-Unit Stride Access, Function Calls, …

• Vectorization of special program constructs

– Idiom Recognition

– Complex data type

• HLO Loop Transformations

• Summary, References

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

45

Alignment

• In general, the memory accesses in packed SSE instructions
require the data to be aligned to 16 byte boundaries

• For packed AVX instructions, it has to be 32 byte alignement

• Unaligned data can be moved to XMM(YMM) registers using
“unaligned load/store” instructions
– However these instruction are very slow except for SSE memory

operations on Intel® Core™ i7 processors or processors based on
future Sandy Bridge architecture

• The compiler splits expensive unaligned memory operations
into 2 partial loads/stores (e.g. two 64byte loads for one
128byte unaligned load) since this is faster – but still much
more expensive than the aligned moves

• The compiler can use „versioning‟ in case alignment is unclear
– A run time check tests for alignment controls execution of a fast

version of the loop assuming required alignment or a slower one
assuming unaligned data

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

46

Alignment Hints to Compiler [C/C++]
• Aligned heap memory allocation by intrinsic / library call

 void* _mm_malloc (int size, int base)

Linux & Mac OS X only:

 int posix_memaligned(void **p,size_t base,size_t size)

• Directive to assert to compiler, that aligned memory operations can
be used for all data accesses in loop following directive

 #pragma vector aligned | unaligned
– Use with care: The assertion must be satisfied not only by start

addresses of all arrays used in loop but for all (!!) data accesses

• Align attribute for variable declarations

 {W,L,M}: __declspec(align(base)) <array_decl>

 {L&M}: <array_decl> __attribute__((aligned(base)))

– The declspec-notation for Linux/Mac OS X is an Intel-specific extension –
not working for the GCC compiler. For pure Linux/Mac OS X development,
the equivalent attribute-syntax should be preferred

• Assertion to compiler that in the loop following the start address of
an array can be assumed to be aligned
– A language extension (not a directive) for C/C++

__assume_aligned(<variable>,base)

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

47

Alignment Hints to Compiler [Fortran]

• Directive to assert to compiler, that aligned memory
operations can be used for all data accesses in loop following
directive

 cDEC$ [VECTOR ALIGNED | UNALIGNED]
– Use with care: The assertion must be satisfied not only by start

addresses of all arrays used in loop but for all (!!) data accesses

• Assertion to compiler that in the loop following the start
address of an array can be assumed to be aligned
– A directive for Fortran

 cDEC$ ASSUME_ALIGNED variable:base

• Align array definition

 cDEC$ ATTRIBUTES ALIGN: base :: variable

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

48

Alignment can be tricky …

• Let us assume, a, b, c would be declared 16-byte aligned in calling routine

• Would this be correct when compiled for SSE2 ?

• Depends on COLWIDTH
– In case it is even : All ok !

– In case it is odd: The generated, vectorized code would fail by alignment error !

• Using __assume_aligned(a,n) is legal since this refers to the start address
only. It wouldn‟t change much for the vectorization however

void matvec(double a[][COLWIDTH], double b[], double x[])

{

 int i, j;

 for (i = 0; i < size1; i++) {

 b[i] = 0;

 #pragma vector aligned

 for (j = 0;j < size2; j=j++)

 b[i] += a[i][j] * x[j];

 }

}

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

49

Alignment Improvements for Intel® Core™ i7
and Future Processors from Intel

• Unaligned data moves of 128 bytes SSE data are
as fast as the aligned versions

• One (unaligned) instruction on the new processors
can replace sequences of up to 7 on previous
architectures
– Fewer instructions, better use of instruction-cache, less

power consumption and faster code !!!

• To get this benefit, the corresponding extension
switch has to be used (e.g. –xSSE4.2 or –xAVX)

• Please note however:
– Aligned move on un-aligned data (e.g. SSE intrinsics) still

fails !

– Future Sandy Bridge architecture will offer this advantage
too for 128 byte data moves, for 256 byte data operation
we continue to face alignment challenges !

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

50

Alignment Improvements - Example

 void p(int n, double* s1, double* s2, double* s3, double* dst)

 {

 for (int i=0;i<n;i++) dst[i] = s1[i] * s2[i+1] + s3[i+1];

 }

n=100000, 10000 calls

Intel® XEON X5560 EP System, 2.8 GHz

Linux Redhat 5.3

Intel Compiler 12.0-048 (12.0 Beta Update 2)

icc –O3 –xSSE2 –fno-alias : 1.04 seconds, 4.9*10**9 instructions in p()

icc –O3 –xSSE4.2 –fno-alias : 0.66 seconds, 3.4*10**9 instructions in p()

Very artificial case – does not reflect average gain

but shows potential alignment benefit

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

51

Agenda

• Introduction

• Vector Code Generation

• Compiler Switches for Automatic Vectorization

• Validating Success of Automatic Vectorization

• When Vectorization fails

– Data Dependence

– Alignment

– Others like Non-Unit Stride Access, Function Calls, …

• Vectorization of special program constructs

– Idiom Recognition

– Complex data type

• HLO Loop Transformations

• Summary, References

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

52

Unsupported Loop Structure

• Unsupported loop structure frequently means, the compiler
can’t construct a runtime expression for the trip-count
– E.g. a while-loop where the number of iterations cannot be

determined at (run-time) start of loop

– Upper/lower bound of a for-loop cannot be a determined to be loop-
invariant

• Frequently this can fixed by minor modifications:

struct _x { int d; int bound;};

doit1(int *a, struct _x *x)

{

 for (int i=0; I < x->bound; i++)

 a[i] = 0;

}

struct _x { int d; int bound;};

doit1(int *a, struct _x *x)

{

 int local_ub = x->bound;

 for (int i=0; I < local_ub; i++)

 a[i] = 0;

}

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

53

 Non-Unit Stride Access

Non-unit stride access: Nonconsecutive memory locations are
being accessed in the loop

• Vectorization might still be possible (e.g. in case access is
regular/linear), the data arrangement operations might be
too expensive

– Vector report: “Loop was not vectorized: vectorization
possible but seems inefficient”

Samples:

for (I=0;I<=MAX;I++)

 for (J=0;J<=MAX;J++)
 {

 D[I][J]+=1; // Unit Stride

 D[J][I]+=1; // Non-Unit but linear

 A[J*J]+=1; // Non-unit

 A[B[J]]+=1; // Non-Unit

 if (A[MAX-J])==1) last=J; // Non-Unit

 }

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

54

Avoiding Non-Unit Stride Access

Code transformations like loop interchange can avoid non-unit
access frequently in case access is linear

Compiler does this automatically in many cases; popular
sample: matrix multiplication loop

– The compiler will swap inner loops to get unit-stride access

// Non-unit access

for (j = 0; j < N; j++)

 for (i = 0; i <= j; i++)

 c[i][j] = a[i][j]+b[i][j];

// Unit access

for (i = 0; i < N; i++)

 for (j = i; i <= N; j++)

 c[i][j] = a[i][j]+b[i][j];

for(i=0;i<N;i++)

 for(j=0;j<N;j++)

 for(k=0;k<N;k++)

 c[i][j] = c[i][j] + a[i][k]*b[k][j];

But in other cases, the exchange has to be done manually: The
following loops are not interchanged implicitly:

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

55

Function Calls / In-lining

• Function calls prevent vectorization in general
– Exception #1 : Call of “intrinsic” functions like math

routines

– Exception #2 : Successful in-lining of called routine
– Inter-procedural optimization enables in-lining of routines

defined even in separate source files

for (i=1;i<nx;i++) {

 x = x0 + i*h;

 sumx = sumx + func(x,y,xp,yp);

}

float func(float x, float y, float xp, float yp)

{

 float denom;

 denom = (x-xp)*(x-xp) + (y-yp)*(y-yp);

 denom = 1./sqrt(denom);

 return denom;

}

Intel Compiler:

15 times

faster by

using –ipo

(/Qipo on

Windows) !*

*: Intel® C++ Compiler 12.0 U1 for Linux, Redhat Enterprise Linux 64bit 6.0, Intel XEON® X5560 processor, 2.8GHz

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

56

Function Calls / In-lining [2]

• Success of in-lining can be verified using the optimization
report
– {L&M}: -opt-report –opt-report-phaseipo_inl

– {W}: /opt-report /Qopt-report-phaseipo_inl

• Intel compilers offer a large set of switches, directives and
language extensions to control in-lining globally or locally
– E.g #pragma forceinline which instructs the compiler to

ignore the heuristic for in-lining and to inline all calls in the
following statements/block (C/C++ only)

– See compiler manual for details

• Inter-procedural optimization offers additional advantages to
vectorization
– Inter-procedural alignment analysis

– Improved (more precise) dependence analysis

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

57

Vectorizable Mathematical Functions

acos ceil fabs round

acosh cos floor sin

asin cosh fmax sinh

asinh erf fmin sqrt

atan erfc log tan

atan2 erfinv log10 tanh

atanh exp log2 trunc

cbrt exp2 pow

Calls to most mathematical function in a loop body are
“vectorized” too by calling vector versions of the function
provided by the “Short Vector Math Library” – libsvml
– Libsvml is optimized for latency compared to the VML library

component of Intel® MKL which realizes same functionality but
which is optimized for throughput

– Routines in libsvml can be called explicitly too (see manual)

This is the set of
mathematical routines
which have a vector
implementation in libsvml
(Intel® Composer XE
2011)

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

58

Data Type Topics

• Objects (variables, constants, …) used in a statement to be
vectorized may have different types and/or sizes

• The compiler frequently can still vectorize them using e.g.
packed SSE/AVX conversion, insertion, extraction, …,
instructions

• To analyze the cases, where this is not possible (
“unsupported data type”), consider
– the partially surprising rules for implicit data type promotions

defined by the programming language standard

– the potentially missing SSE/AVX instruction which would be
needed here

– The size differences for source and result operands potentially
required for operations like a multiplication

• In case the complex data type (either single or double
precision) is being used (Fortran, C99), Intel® SSE3
provides the basic arithmetic instructions to support
vectorization

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

59

Student Exercise # 3
Understand Type Impact

typedef int SUM_TYPE;

short ip(char *v1, char *v2)

{

 SUM_TYPE inner_product = 0;

 #pragma vector aligned

 for (int i=0; i<1024; ++i)

 inner_product += v1[i] * v2[i];

 return inner_product;

}

Explain, why the code to
the right vectorizes (
SSE2) for
 SUM_TYPE == “int”
but does not for
 SUM_TYPE == “short”

Hints:
-what is the type v1 and
v2 have to be promoted
to before the
multiplication ?
-Look at SSE2
instructions PMADDWD
(multiply and add)

PMADDWD a, b: Mutiplies the 8 signed 16 bit
integers from a by the 8 signed integers from b.
Adds the signed 32bit integer results pairwise
and packs the 4 signed 32-bit integer results
into a

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

60

Control Flow/ Control Dependencies

• Control dependencies caused by a complex control flow
within the loop body prevent vectorization in general

• However loops with “conditional statements” can be
vectorized frequently using a bit masking technique
– The idea outlined using a sample :

for (i=1; i<=U; i++)

 if (R1[i] > R2[i])

 L1[i] = R1[i];

 else

 L2[i] = R2[i];

MASK[1:U] = (R1[1:U] > R2[1:U]);

L1[1:U] = (MASK[1:U] & R1[1:U]) |

 (!MASK[1:U] & L1[1:U]);

L2[1:U] = (MASK[1:U] & L2[1:U]) |

 (!MASK[1:U] & R2[1:U]);

• This “if-conversion” by bit-masking works too for if-
constructs with a “true” branch only

• The SSE instruction set facilitates a very compact and
efficient construction of the bit mask generation and the
masking operations
– See sample code for SSE-intrinsics introduced earlier

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

61

Bit Masking – Guarding Errors

• This “if-conversion” causes both, the “if” and “else”
part to be evaluated for all iterations. The compiler
will do this only in case it can exclude to introduce
errors which have been protected in the original
code
– Vector report: “… condition may protect exception”

– In our sample, the compiler can be sure to not introduce a
new exception since the right-end side expressions are
touched in the test anyway already for each iteration

– In some cases, the compiler will add tests before the loop to
validate the correctness of the transformations

– Vectorization-enabling directives like “#pragma vector
always” will assure to compiler, that the masking
transformation is safe

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

62

Student Exercise

a) Compile and run a simple program multiplying a
matrix with a vector showing some of the topics
introduced up to now like vectorization reports,
dependence, memory disambiguation and
alignment

b) A program showing the benefits of interprocedural
optimization

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

63

Agenda

• Introduction

• Vector Code Generation

• Compiler Switches for Automatic Vectorization

• Validating Success of Automatic Vectorization

• When Vectorization fails

– Data Dependence

– Alignment

– Others like Non-Unit Stride Access, Function Calls, …

• Vectorization of special program constructs

– Idiom Recognition

– Complex data type

• HLO Loop Transformations

• Summary, References

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

64

unsigned char a[N], b[N];

void swap32(int n)

{

 int i;

 for (i = 0; i < n; i+=4)

 {

 a[i+0] = b[i+3];

 a[i+1] = b[i+2];

 a[i+2] = b[i+1];

 a[i+3] = b[i+0];

 }

}

Idiom Recognition

L: movdqa xmm1, b[ecx*4-4]

 pshufb xmm1, xmm0

 movdqa a[ecx*4-4], xmm1

 add ecx, 4

 cmp ecx, eax

 jle L

Byte swapping pattern is recognized as an idiom.
PSHUFB is an instruction introduced by SSSE-3; thus the corresponding
transformation requires extension SSSE3 at least

The Intel compilers recognize program constructs which can be
mapped onto compact idiomatic SSE/AVX instructions
providing optimal performance

Sample:

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

65

Idiom Recognition – Saturation

• To enable idiom recognition, the source code needs to
express exactly the conditions required to use the
corresponding SSE instruction

• In the sample below, the compiler will use PADDSB (“Add
packed signed bytes with saturation”) because the source
code limits both, the upper and lower bound, of the add
operation
– Frequently the lower bound check is missing which would be ok

here only for unsigned char !

define N 1000

void sat_signed_char(char va[N],char vb[N], char vc[N])

{

 int i;

 for (i = 0; i < N; i++)

 vc[i] = ((vb[i] + va[i] > 127) ? 127 :

 ((vb[i] + va[i] < -128) ? -128 :

 vb[i] + va[i]));

}

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

66

Vectorization for Complex Arithmetic

float _Complex zc[10];

float _Complex za=4 + __I__*2;

 //Real Part = 4

 //Imaginary part = 2

void zscale() {

 for (int i=0; i<10; i++)

 zc[i] = za*csin(zc[i]);

}

//Compile (W): icl complex.c /Qstd=c99 /QxSSE3

//Compile (L & M): icl complex.c -std=c99 -xSSE3

• Both C (C99) and Fortran provide explicit support for
COMPLEX data type

• The Intel compilers can vectorize the corresponding
arithmetic instructions using SSE3 instructions

• Sample for C :

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

67

Agenda

• Introduction

• Vector Code Generation

• Compiler Switches for Automatic Vectorization

• Validating Success of Automatic Vectorization

• When Vectorization fails

– Data Dependence

– Alignment

– Others like Non-Unit Stride Access, Function Calls, …

• Vectorization of special program constructs

– Idiom Recognition

– Complex data type

• HLO Loop Transformations

• Summary, References

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

68

Loop Transformations
• Frequently (optimal) vectorization is possible only after

adapting the loops before

• The compiler component responsible for these loop
transformations is phase HLO – High Level Optimization
– While HLO is active for optimization level O2 and O3, only O3

activates the full set of transformations and applies the
transformations more aggressively

• Intel compilers provide detailed report on HLO activity:
{L&M}: –opt-report –opt-report-phasehlo

{W}: /Qopt-report /Qopt-report-phasehlo

…

LOOP INTERCHANGE in loops at line: 7 8 9

Loopnest permutation (1 2 3) --> (2 3 1)

…

Loop at line 7 unrolled and jammed by 4

Loop at line 8 unrolled and jammed by 4

…

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

69

14: for (i=0; i<100; i++)

15: {

16: a[i] = 0;

17: for (j=0; j<100; j++)

18: a[i] += b[j][i];

19: }

Sample for Loop Transformations

a[0:99] = 0;

for (j=0; j<100; j++)

 a[0:99] += b[j][0:99];

Report from vectorizer:

file.c(16) : (col. 8) remark: PARTIAL LOOP WAS VECTORIZED.

file.c(14) : (col. 8) remark: loop was not vectorized: not inner loop.

file.c(18) : (col. 10) remark: PERMUTED LOOP WAS VECTORIZED.

Transformations done by compiler:

1) i-loop is distributed into 2 loops: a single loop and a nested loop

2) Nested loop is interchanged to exploit spatial locality on b[j][i]

3) A single loop is vectorized. (1st VECTORIZED message)

4) Inner loop of the interchanged nested loop is vectorized (2nd VECTORIZED

message)

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

70

Some HLO (Loop) Transformations
Enabled for –O3

– Loop interchange (for more efficient memory access)

– Loop unrolling (more instruction level parallelism)

– Cache blocking (for more reuse of data in cache)

– Loop peeling (allow for misalignment)

– Loop versioning (for loop count, data alignment, …)

– Memcpy recognition (call Intel‟s fast memcpy, memset)

– Loop splitting (facilitate vectorization)

– Loop fusion (more efficient vectorization)

– Scalar expansion (remove dependency)

– Loop rerolling (enable vectorization)

– Loop reversal (handle dependencies)

*Blue color: Applied too for optimization level O2

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

71

Student Exercise [optional]

a) Sample program showing benefit of Complex
Arithmetic vectorization

b) Sample program for idiom recognition

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

72

Agenda

• Introduction

• Vector Code Generation

• Compiler Switches for Automatic Vectorization

• Validating Success of Automatic Vectorization

• When Vectorization fails

– Data Dependence

– Alignment

– Others like Non-Unit Stride Access, Function Calls, …

• Vectorization of special program constructs

– Idiom Recognition

– Complex data type

• HLO Loop Transformations

• Summary, References

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

73

Summary

• Intel® C++ and Intel® Fortran Compilers of Intel®
Composer XE provide sophisticated and flexible
support for automatic vectorization

• Even for “automatic” vectorization explicit
compilation support via developer can improve
result considerably

– Compiler provides reporting features to look at results

– Directives and compiler switches permit fine-tuning for
vectorization

• Some understanding of concepts like dependence
and alignment is required to get best SSE/AVX
performance out of the compilers

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

74

References

[1] Aart Bik: “The Software Vectorization Handbook”

– http://www.intel.com/intelpress/sum_vmmx.htm

[2] Intel® 64 and IA-32 Architectures Software
Developer's Manuals

– http://www.intel.com/products/processor/manuals/in
dex.htm

[3] Randy Allen, Ken Kennedy: “Optimizing
Compilers for Modern Architectures: A
Dependence-based Approach”

[4] Intel Software Forums, Knowledge Base, White
Papers, Tools Support etc

– http://software.intel.com

[5] Steven S. Muchnik, “Advanced Compiler Design
and Implementation”

http://www.intel.com/intelpress/sum_vmmx.htm
http://www.intel.com/products/processor/manuals/index.htm
http://www.intel.com/products/processor/manuals/index.htm
http://software.intel.com/

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

75

Optimization Notice

Intel® compilers, associated libraries and associated development tools may include or utilize options that
optimize for instruction sets that are available in both Intel® and non-Intel microprocessors (for example SIMD
instruction sets), but do not optimize equally for non-Intel microprocessors. In addition, certain compiler
options for Intel compilers, including some that are not specific to Intel micro-architecture, are reserved for
Intel microprocessors. For a detailed description of Intel compiler options, including the instruction sets and
specific microprocessors they implicate, please refer to the “Intel® Compiler User and Reference Guides” under
“Compiler Options." Many library routines that are part of Intel® compiler products are more highly optimized
for Intel microprocessors than for other microprocessors. While the compilers and libraries in Intel® compiler
products offer optimizations for both Intel and Intel-compatible microprocessors, depending on the options you
select, your code and other factors, you likely will get extra performance on Intel microprocessors.

Intel® compilers, associated libraries and associated development tools may or may not optimize to the same
degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include Intel® Streaming SIMD Extensions 2 (Intel® SSE2), Intel® Streaming SIMD Extensions 3
(Intel® SSE3), and Supplemental Streaming SIMD Extensions 3 (Intel® SSSE3) instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are
intended for use with Intel microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining the best
performance on Intel® and non-Intel microprocessors, Intel recommends that you evaluate other compilers
and libraries to determine which best meet your requirements. We hope to win your business by striving to
offer the best performance of any compiler or library; please let us know if you find we do not.

Notice revision #20101101

Software & Services Group, Developer Products Division

Copyright © 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization
Notice

76

Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Performance tests and ratings are measured using specific computer systems and/or components
and reflect the approximate performance of Intel products as measured by those tests. Any
difference in system hardware or software design or configuration may affect actual performance.
Buyers should consult other sources of information to evaluate the performance of systems or
components they are considering purchasing. For more information on performance tests and on
the performance of Intel products, reference www.intel.com/software/products.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2010. Intel Corporation.

http://intel.com/software/products

http://www.intel.com/software/products

