
Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

Principles and Practice of

Application Performance

Measurement and Analysis on

Parallel Systems
Lecture 2: Practical Performance Analysis and Tuning

1. July 2011 | Bernd Mohr

Institute for Advanced Simulation (IAS)

Jülich Supercomputing Centre (JSC)

CONTENT

 Fall-back

• Simple timers

• Hardware counter measurements

 Overview of some performance tools

• mpiP, TAU, Vampir + Vampirtrace

 Practical Performance Analysis and Tuning

 Challenges and open problems in performance optimization

• Heterogeneous systems

• Automatic performance analysis: KOJAK/Scalasca

• Beyond execution time and f lops

• Extremely large HPC systems
II-2

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-3

Fall-back: Home-grown Performance Tools

 If performance analysis and tuning tools are

 not available

 too complex and complicated

it is still possible to do some simple measurements

 Time Measurements

 gettimeofday()

 clock_gettime()

 ...

 Hardware Performance Counter Measurements

PAPI

II-4

Timer: gettimeofday()

 UNIX function

 Returns wall-clock time in seconds and microseconds

 Actual resolution is hardware-dependent

 Base value is 00:00 UTC, January 1, 1970

 Some implementations also return the timezone

#include <sys/time.h>

struct timeval tv;

double walltime; /* seconds */

gettimeofday(&tv, NULL);

walltime = tv.tv_sec + tv.tv_usec * 1.0e-6;

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

Timer: clock_gettime()

 POSIX function

 For clock_id CLOCK_REALTIME

returns wall-clock time in seconds and nanoseconds

 More clocks may be implemented but are not standardized

 Actual resolution is hardware-dependent

II-5

#include <time.h>

struct timespec tv;

double walltime; /* seconds */

Clock_gettime(CLOCK_REALTIME, &tv);

walltime = tv.tv_sec + tv.tv_nsec * 1.0e-9;

II-6

Timer: getrusage()

 UNIX function

 Provides a variety of dif ferent information

 Including user time, system time, memory usage, page faults, etc.

 Information provided system-dependent!

#include <sys/resource.h>

struct rusage ru;

double usrtime; /* seconds */
int memused;

getrusage(RUSAGE_SELF, &ru);
usrtime = ru.ru_utime.tv_sec +

ru.ru_utime.tv_usec * 1.0e-6;

memused = ru.ru_maxrss;

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-7

Timer: Others

 MPI provides portable MPI wall-clock timer

Not required to be consistent/synchronized across ranks!

 Same for OpenMP 2.0 (!) programming

 Hybrid MPI/OpenMP programming?

 Interactions between both standards (yet) undef ined

#include <mpi.h>

double walltime; /* seconds */

walltime = MPI_Wtime();

#include <omp.h>

double walltime; /* seconds */

walltime = omp_get_wtime();

II-8

Timer: Others

 Fortran 90 intrinsic subroutines

 cpu_time()

 system_clock()

 Hardware Counter Libraries

Vendor APIs (PMAPI, HWPC, libhpm, libpfm, libperf , ...)

PAPI

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-9

What Are Performance Counters

 Extra logic inserted in the processor to count specif ic events

 Updated at every cycle

 Strengths

Non-intrusive

Very accurate

 Low overhead

 Weaknesses

Provides only hard counts

Specif ic for each processor

Access is not appropriate for the end user

nor well documented

 Lack of standard on what is counted

II-10

Multi

platform

interface

 Multi-platform interfaces

The Performance API - PAPI

 University of Tennessee, USA

 LIKWID

 University of Erlangen, Germany

Kernel

 Kernel level issues

Handling of overf lows

Thread accumulation

Thread migration

State inheritance

Multiplexing

Overhead

Atomicity

Hardware Counters Interface Issues

Hardware
counters

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-11

Hardware Measurement

 Typical measured events account for:

Functional units status

 Float point operations

 Fixed point operations

 Load/stores

Access to memory hierarchy

Cache coherence protocol events

Cycles and instructions counts

Speculative execution information

 Instructions dispatched

 Branches mispredicted

II-12

Hardware Metrics

 Typical Hardware Counter

Cycles / Instructions

Floating point instructions

 Integer instructions

 Load/stores

Cache misses

TLB misses

 Useful derived metrics

 IPC - instructions per cycle

Float point rate

Computation intensity

 Instructions per load/store

Load/stores per cache miss

Cache hit rate

Loads per load miss

 Loads per TLB miss

 Derived metrics allow users to correlate the behavior of the application to

one or more of the hardware components

 One can def ine threshold values acceptable for metrics and take actions

regarding program optimization when values are below/above the

threshold

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-13

Accuracy Issues

 Granularity of the measured code

 If not suf f iciently large enough, overhead of the counter interfaces

may dominate

 Pay attention to what is not measured:

Out-of-order processors

Sometimes speculation is included

 Lack of standard on what is counted

 Microbenchmarks can help determine accuracy

of the hardware counters

II-14

Hardware Counters Access on Linux

 Linux had not def ined an out-of -the-box interface to access the
hardware counters!

 Linux Performance Monitoring Counters Driver (PerfCtr)
by Mikael Pettersson f rom Uppsala X86 + X86-64

 Needs kernel patching!

 http://user.it.uu.se/~mikpe/linux/perfctr/

Perfmon by Stephane Eranian f rom HP – IA64

 It was being evaluated to be added to Linux

 http://www.hpl.hp.com/research/linux/perfmon/

 Linux 2.6.31

Performance Counter subsystem provides an abstraction of special
performance counter hardware registers

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-15

Utilities to Count Hardware Events

 There are utilities that start a program and at the end of the execution

provide overall event counts

 hpmcount (IBM)

CrayPat (Cray)

 pfmon f rom HP (part of Perfmon for AI64)

 psrun (NCSA)

 cputrack, har (Sun)

 perfex, ssrun (SGI)

 perf (Linux 2.6.31)

II-16

Hardware Counters: PAPI

 Parallel Tools Consortium

(PTools) sponsored project

 Performance Application Programming Interface

 Two interfaces to the underlying counter hardware:

The high-level interface simply provides the ability to start, stop and

read the counters for a specif ied list of events

The low-level interface manages hardware events in user def ined

groups called EventSets

 Timers and system information

 C and Fortran bindings

 Experimental PAPI interface to performance counters support in the

linux 2.6.31 kernel

 http://icl.cs.utk.edu/papi/

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-17

PAPI Machine

Dependent

Substrate

PAPI Low Level
Portable

Layer

Tools

Hardware Performance Counters

Operating System

Kernel ExtensionsMachine

Specific

Layer

PAPI High Level

PAPI Architecture

II-18

PAPI Predefined Events

 Common set of events deemed relevant and useful

for application performance tuning (wish list)

 papiStdEventDefs.h

Accesses to the memory hierarchy, cache coherence protocol

events, cycle and instruction counts, functional unit and pipeline

status

Run PAPI papi_avail utility to determine which predef ined events

are available on a given platform

Semantics may dif fer on dif ferent platforms!

 PAPI also provides access to native events on all supported platforms

through the low-level interface

Run PAPI papi_native_avail utility to determine which predef ined

events are available on a given platform

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-19

PAPI avail Utility

% papi_avail -h
This is the PAPI avail program.
It provides availability and detail information
for PAPI preset and native events. Usage:

papi_avail [options] [event name]
papi_avail TESTS_QUIET

Options:

-a display only available PAPI preset events
-d display PAPI preset event info in detailed format
-e EVENTNAME display full detail for named preset or native event
-h print this help message

-t display PAPI preset event info in tabular format (default)

II-20

PAPI Preset Listing

(derose@jaguar1) 184% papi_avail

LibLustre: NAL NID: 0005dc02 (2)
Lustre: OBD class driver Build Version: 1, info@clusterfs.com

Test case avail.c: Available events and hardware information.

Vendor string and code : AuthenticAMD (2)

Model string and code : AMD K8 (13)
CPU Revision : 1.000000

CPU Megahertz : 2400.000000

CPU's in this Node : 1
Nodes in this System : 1

Total CPU's : 1
Number Hardware Counters : 4

Max Multiplex Counters : 32

Name Code Avail Deriv Description (Note)

PAPI_L1_DCM 0x80000000 Yes Yes Level 1 data cache misses ()
PAPI_L1_ICM 0x80000001 Yes Yes Level 1 instruction cache misses ()

PAPI_L2_DCM 0x80000002 Yes No Level 2 data cache misses ()

PAPI_L2_ICM 0x80000003 Yes No Level 2 instruction cache misses ()
PAPI_L3_DCM 0x80000004 No No Level 3 data cache misses ()

PAPI_L3_ICM 0x80000005 No No Level 3 instruction cache misses ()
PAPI_L1_TCM 0x80000006 Yes Yes Level 1 cache misses ()

PAPI_L2_TCM 0x80000007 Yes Yes Level 2 cache misses ()

PAPI_L3_TCM 0x80000008 No No Level 3 cache misses ()
. . .

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-21

Example: papi_avail –e PAPI_L1_TCM (AMD Opteron)

Event name: PAPI_L1_TCM
Event Code: 0x80000006
Number of Native Events: 4
Short Description: |L1 cache misses|
Long Description: |Level 1 cache misses|
Developer's Notes: ||
Derived Type: |DERIVED_ADD|
Postfix Processing String: ||
|Native Code[0]: 0x40001e1c DC_SYS_REFILL_MOES|
|Number of Register Values: 2|
|Register[0]: 0x20f P3 Ctr Mask|
|Register[1]: 0x1e43 P3 Ctr Code|
|Native Event Description: |Refill from system. Cache bits: Modified Owner Exclusive Shared|

|Native Code[1]: 0x40000037 IC_SYS_REFILL|
|Number of Register Values: 2|
|Register[0]: 0xf P3 Ctr Mask|
|Register[1]: 0x83 P3 Ctr Code|
|Native Event Description: |Refill from system|

|Native Code[2]: 0x40000036 IC_L2_REFILL|
|Number of Register Values: 2|
|Register[0]: 0xf P3 Ctr Mask|
|Register[1]: 0x82 P3 Ctr Code|
|Native Event Description: |Refill from L2|

|Native Code[3]: 0x40001e1b DC_L2_REFILL_MOES|
|Number of Register Values: 2|
|Register[0]: 0x20f P3 Ctr Mask|
|Register[1]: 0x1e42 P3 Ctr Code|
|Native Event Description: |Refill from L2. Cache bits: Modified Owner Exclusive Shared|

II-22

PAPI papi_native_avail Utility (AMD Opteron)

(derose@sleet) 187% papi_native_avail |more
Test case NATIVE_AVAIL: Available native events and hardware information.

Vendor string and code : AuthenticAMD (2)
Model string and code : AMD K8 Revision C (15)
CPU Revision : 10.000000
CPU Megahertz : 2193.406982
CPU's in this Node : 2
Nodes in this System : 1
Total CPU's : 2
Number Hardware Counters : 4
Max Multiplex Counters : 32

The following correspond to fields in the PAPI_event_info_t structure.
Symbol Event Code Count
|Short Description|
|Long Description|
|Derived|
|PostFix|

The count field indicates whether it is a) available (count >= 1) and b) derived
(count > 1)

FP_ADD_PIPE 0x40000000
|Dispatched FPU ops - Revision B and later revisions - Speculative add pipe ops
excluding junk ops|
|Register Value[0]: 0xf P3 Ctr Mask|
|Register Value[1]: 0x100 P3 Ctr Code|

FP_MULT_PIPE 0x40000001
|Dispatched FPU ops - Revision B and later revisions - Speculative multiply pipe
ops excluding junk ops|
|Register Value[0]: 0xf P3 Ctr Mask|
|Register Value[1]: 0x200 P3 Ctr Code|

. . .

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-23

High Level API

 Meant for application programmers wanting

simple but accurate measurements

 Calls the lower level API

 Allows only PAPI preset events

 Eight functions:

PAPI_num_counters

PAPI_start_counters, PAPI_stop_counters

PAPI_read_counters

PAPI_accum_counters

PAPI_flops

PAPI_flips, PAPI_ipc (New in Version 3.x)

 Not thread-safe (Version 2.x)

II-24

Example: Quick and Easy Mflop/s

program papiMflops
parameter (N=1024)
include "f77papi.h"
integer*8 fpins
real*4 realtm, cputime, mflops
integer ierr
real*4 a(N,N)

call random_number(a)
call PAPIF_flops(realtm, cputime, fpins, mflops, ierr)
do j=1,N
do i=1,N
a(i,j)=a(i,j)*a(i,j)

end do
end do
call PAPIF_flops(realtm, cputime, fpins, mflops, ierr)
print *,' realtime: ', realtm, ' cputime: ', cputime
print *,' papi_flops: ', mflops, ' Mflop/s'

end

% ./papiMflops
realtime: 3.640159 cputime: 3.630502
papi_flops: 29.67809 MFlops

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-25

General Events

program papicount
parameter (N=1024)
include "f77papi.h"
integer*8 values(2)
integer events(2), ierr
real*4 a(N,N)

call random_number(a)
events(1) = PAPI_L1_DCM
events(2) = PAPI_L1_DCA
call PAPIF_start_counters(events, 2, ierr)
do j=1,N
do i=1,N
a(i,j)=a(i,j)*a(i,j)

end do
end do
call PAPIF_read_counters(values, 2, ierr)
print *,' L1 data misses : ', values(1)
print *,' L1 data accesses: ', values(2)

end
% ./papicount
L1 data misses : 13140168
L1 data accesses: 500877001

II-26

Low Level API

 Increased ef f iciency and functionality

over the high level PAPI interface

 54 functions

 Access to native events

 Obtain information about

the executable, the hardware, and memory

 Set options for multiplexing

and overf low handling

 System V style sampling (prof il())

 Thread safe

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

CONTENT

 Fall-back

• Simple timers

• Hardware counter measurements

 Overview of some performance tools

• mpiP, TAU, Vampir + Vampirtrace

 Practical Performance Analysis and Tuning

 Challenges and open problems in performance optimization

• Heterogeneous systems

• Automatic performance analysis: KOJAK/Scalasca

• Beyond execution time and f lops

• Extremely large HPC systems
II-27

II-28

MPI Profiling: mpiP

 Scalable, light-weight MPI prof iling library

 Generates detailed text summary of MPI behavior

Time spent at each MPI function callsite

Bytes sent by each MPI function callsite (where applicable)

MPI I/O statistics

Conf igurable traceback depth for function callsites

 Controllable f rom program using MPI_Pcontrol

Allows you to prof ile just one code module or cycle

Allows mpiP prof ile dumps mid-run

 Uses PMPI interface  only re-link of application necessary

 http://mpip.sourceforge.net/

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-29

mpiP Text Output Example

@ mpiP
@ Version: 3.1.1
// 10 lines of mpiP and experiment configuration options
// 8192 lines of task assignment to BlueGene topology information

@--- MPI Time (seconds) ---
Task AppTime MPITime MPI%

0 37.7 25.2 66.89
// ...
8191 37.6 26 69.21

* 3.09e+05 2.04e+05 65.88

@--- Callsites: 26 --
ID Lev File/Address Line Parent_Funct MPI_Call
1 0 coarsen.c 542 hypre_StructCoarsen Waitall

// 25 similiar lines

@--- Aggregate Time (top twenty, descending, milliseconds) --------
Call Site Time App% MPI% COV
Waitall 21 1.03e+08 33.27 50.49 0.11
Waitall 1 2.88e+07 9.34 14.17 0.26
// 18 similiar lines

II-30

mpiP Text Output Example (cont.)

@--- Aggregate Sent Message Size (top twenty, descending, bytes) --
Call Site Count Total Avrg Sent%
Isend 11 845594460 7.71e+11 912 59.92
Allreduce 10 49152 3.93e+05 8 0.00
// 6 similiar lines

@--- Callsite Time statistics (all, milliseconds): 212992 ---------
Name Site Rank Count Max Mean Min App% MPI%
Waitall 21 0 111096 275 0.1 0.000707 29.61 44.27
// ...
Waitall 21 8191 65799 882 0.24 0.000707 41.98 60.66
Waitall 21 * 577806664 882 0.178 0.000703 33.27 50.49
// 213,042 similiar lines

@--- Callsite Message Sent statistics (all, sent bytes) -----------
Name Site Rank Count Max Mean Min Sum
Isend 11 0 72917 2.621e+05 851.1 8 6.206e+07
//...
Isend 11 8191 46651 2.621e+05 1029 8 4.801e+07
Isend 11 * 845594460 2.621e+05 911.5 8 7.708e+11
// 65,550 similiar lines

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-31

“Swiss Army Knife” of

Performance Analysis : TAU

 Very portable tool set for instrumentation, measurement

and analysis of parallel multi-threaded applications

 Instrumentation API supports choice

 between prof iling and tracing

 of metrics (i.e., time, HW Counter (PAPI))

 Uses Program Database Toolkit (PDT) for

C, C++, Fortran source code instrumentation

 Supports

 Languages: C, C++, Fortran 77/90, HPF, HPC++, Java, Python

Threads: pthreads, Tulip, SMARTS, Java, Win32, OpenMP

Systems: same as KOJAK + Windows + MacOS + …

 http://tau.uoregon.edu/

 http://www.cs.uoregon.edu/research/pdt/

II-32

TAU Instrumentation

 Flexible instrumentation mechanisms at multiple levels

Source code

 manual

 automatic

 C, C++, F77/90/95 (Program Database Toolkit (PDT))

 OpenMP (directive rewriting with Opari)

Object code

 pre-instrumented libraries (e.g., MPI using PMPI)

 statically-linked and dynamically-loaded (e.g., Python)

Executable code

 dynamic instrumentation (pre-execution) (DynInst)

 virtual machine instrumentation (e.g., Java using JVMPI)

 Support for performance mapping

 Support for object-oriented and generic programming

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-33

TAU Profiling, Large System

II-34

ParaProf –Callgraph View (MFIX)

Box width and
color indicate

different metrics

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

TAU Usage

 Usage:

Specify programming model by setting TAU_MAKEFILE
to one of $<TAU_ROOT>/<arch>/lib/Makefile.tau-*
Examples f rom Linux cluster with Intel compiler and PAPI:

 MPI: Makefile.tau-icpc-papi-mpi-pdt

 OMP: Makefile.tau-icpc-papi-pdt-openmp-opari

 OMPI: Makefile.tau-icpc-papi-mpi-pdt-openmp-opari

Compile and link with

 tau_cc.sh file.c ...

 tau_cxx.sh file.cxx...

 tau_f90.sh file.f90 ...

Execute with real input data

Environment variables control measurement mode

 TAU_PROFILE, TAU_TRACE, TAU_CALLPATH, …

Examine results with paraprof

II-36

Vampirtrace MPI Tracing Tool

 Library for Tracing of MPI and Application Events

Records MPI-1 point-to-point and collective communication

Records MPI–2 I/O operations and RMA operations

Records user subroutines

 Uses the standard MPI prof iling interface

 Usage:

Compile and link with

 vtcc -vt:cc mpicc file.c ...

 vtcxx -vt:cxx mpiCC file.cxx...

 vtf90 -vt:f90 mpif90 file.f90 ...

Execute with real input data ( generates <exe>.otf)

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-37

Vampirtrace MPI Tracing Tool

 Versions up to 4.0 until 2003 were commercially

distributed by PALLAS as VampirTrace

 Current status

Commercially distributed by Intel

 Version 5 and up distributed as Intel Trace Collector

 For Intel based platforms only

 http://software.intel.com/en-us/articles/intel-cluster-toolkit/

New open-source VampirTrace version 5 distributed by

Technical University Dresden

 Based on KOJAK’s measurement system

with OTF backend

 http://www.tu-dresden.de/zih/vampirtrace/

 Is also distributed as part of Open MPI

Vampir Event Trace Visualizer

 Visualization and

Analysis of MPI

Programs

 Commercial

product

II-38

 Originally developed by

Forschungszentrum Jülich

 Now all development by

Technical University

Dresden

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-39

Vampir Event Trace Visualizer

 Versions up to 4.0 until 2003 were commercially

distributed by PALLAS as Vampir

 Current status

Commercially distributed by Intel

 Version 4 distributed as Intel Trace Analyzer

 For Intel based platforms only

 Intel meanwhile released own new version (ITA V6 and up)

 http://software.intel.com/en-us/articles/intel-cluster-toolkit/

Original Vampir (and new VNG) commercially distributed by

Technical University Dresden

 http://www.vampir.eu

II-40

Vampir: Time Line Diagram

 Functions

organized

into groups

 coloring

by group

 Message

lines can

be colored

by tag or

size

 Information about states, messages, collective and I/O operations

available through clicking on the representation

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

Vampir: Process and Counter Timelines

 Process

timeline

show

call stack

nesting

 Counter

timelines

for

hardware

or

sof tware

counters

II-41

II-42

Vampir: Execution Statistics

 Aggregated

prof iling

information:

execution time,

number of calls,

inclusive/exclusive

 Available for all /

any group (activity)

or all routines (symbols)

 Available for any part

of the trace

 selectable through time line diagram

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

Vampir: Process Summary

 Execution statistics

over all processes

for comparison

 Clustering mode

available for large

process counts

II-43

II-44

Vampir: Communication Statistics

 Byte and message count,
min/max/avg message length
and min/max/avg bandwidth

for each process pair

 Message length

statistics

 Available for any part
of the trace

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

Other Profiling Tools

 gprof

Available on many systems

Compiler instrumentation (invoked via –g –pg)

 FPMPI-2 (ANL)

 http://www.mcs.anl.gov/fpmpi/

MPI prof iler (invoked via re-linking)

 special: Optionally identif ies synchronization time

 single output f ile: count, sum, avg, min, max over ranks

 ThreadSpotter (Rogue Wave) [commercial product]

 http://www.roguewave.com/products/threadspotter.aspx

Sampling-based memory and thread performance analyzer

Works on un-modif ied, optimized executables

Other Profiling Tools II

 ompP (UC Berkeley)

 http://www.ompp-tool.com

OpenMP prof iler (invoked via OPARI source instrumentation)

 HPCToolkit (Rice University)

 http://www.hpctoolkit.org

Multi-platform sampling-based callpath prof iler

Works on un-modif ied, optimized executables

 Open|SpeedShop (Krell Insitute with support of LANL, SNL, LLNL)

 http://www.openspeedshop.org

Comprehensive performance analysis environment

Uses binary instrumentation (via DynInst)

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

Other Tracing Tools

 MPE / Jumpshot (ANL)

Part of MPICH2

 Invoked via re-linking

Only supports MPI P2P and collectives; SLOG2 trace format

 Extrae / Paraver (BSC/UPC)

 http://www.bsc.es/paraver

Measurement system (Extrae) and visualizer (Paraver)

Powerful f ilter and summarization features

Very conf igurable visualization

CONTENT

 Fall-back

• Simple timers

• Hardware counter measurements

 Overview of some performance tools

• mpiP, TAU, Vampir + Vampirtrace

 Practical Performance Analysis and Tuning

 Challenges and open problems in performance optimization

• Heterogeneous systems

• Automatic performance analysis: KOJAK/Scalasca

• Beyond execution time and f lops

• Extremely large HPC systems
II-48

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-49

Practical Performance Analysis and Tuning

 Successful tuning is combination of

Right algorithm and libraries

Compiler f lags and pragmas / directives

(Learn and use them)

THINKING

 Measurement is better than reasoning / intuition (= guessing)

To determine performance problems

To validate tuning decisions / optimizations

(af ter each step!)

II-50

Practical Performance Analysis and Tuning

 It is easier to optimize a slow correct program

than to debug a fast incorrect one

 Debugging before Tuning

 Nobody really cares how fast you can compute

the wrong answer

 The 80/20 rule

Program spents 80% time in 20% of code

Programmer spends 20% ef fort to get 80% of the total speedup

possible in the code

 Know when to stop!

 Don’t optimize what doesn’t matter

 Make the common case fast

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-51

Typical Performance Analysis Procedure

1. Do I have a performance problem at all?

 Time / hardware counter measurements

 Speedup and scalability measurements

2. What is the main bottleneck (computation/communication...) ?

 Flat prof iling (sampling / prof)

3. Where is the main bottleneck?

 Call graph prof iling (gprof)

 Detailed (basic block) prof iling

4. Why is it there?

 Hardware counters analysis

 Trace selected parts to keep trace f iles manageable

5. Does my code have scalability problems?

 Load Imbalance analysis

 Prof ile code for typical small and large processor count

 Compare prof iles function-by-function

CONTENT

 Fall-back

• Simple timers

• Hardware counter measurements

 Overview of some performance tools

• mpiP, TAU, Vampir + Vampirtrace

 Practical Performance Analysis and Tuning

 Challenges and open problems in performance optimization

• Heterogeneous systems

• Automatic performance analysis: KOJAK/Scalasca

• Beyond execution time and f lops

• Extremely large HPC systems
II-52

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-53

Heterogenous Systems

 Current trend to use hardware acceleration to speedup calculations

 IBM Cell (e.g. LANL Roadrunner)

Clearspead

FPGA-based acceleration

GPU-based acceleration

 In the long run: new programming models needed

 Very little to not existing tool support

Tool research opportunities!

GPU Performance Tools

 CUDA prof iler

 TAU

CUDA + OpenCL prof iling (host side)

 VampirTrace

CUDA tracing (host side)

II-54

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

Current Related Projects

Hybrid Programming for

Heterogeneous Architectures

EU ITEA2 funded project 2010 – 2013

Successor of successful ParMA project

 25 partners for France, Germany, Spain, Sweden

including Bull, TUD, BSC, USQV, JSC, Acumem

Develop programming models and tools

Evaluation with large set of industrial codes

//H4H

CONTENT

 Fall-back

• Simple timers

• Hardware counter measurements

 Overview of some performance tools

• mpiP, TAU, Vampir + Vampirtrace

 Practical Performance Analysis and Tuning

 Challenges and open problems in performance optimization

• Heterogeneous systems

• Automatic performance analysis: KOJAK/Scalasca

• Beyond execution time and f lops

• Extremely large HPC systems
II-56

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

“A picture is worth 1000 words…”

II-57

 MPI class example: Send messages in a ring program

“What about 1000’s of pictures?”

(with 100’s of menu options)

II-58

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-59

Example Automatic Analysis: Late Sender

II-60

Example Automatic Analysis (2): Wait at NxN

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-61

Basic Idea Automatic Performance Analysis

Huge amount of
Measurement data

Relevant
problems
and data

 For non-standard /

tricky cases (10%)

 For expert users

 For standard cases (90% ?!)

 For “normal” users

 Starting point for experts

 More productivity for performance analysis process!

 “Traditional” Tool  Automatic Tool

Simple:
1 screen +
2 commands +

3 panes

Pattern
Analyzer

Guidance

II-62

The KOJAK Project

 Kit for Objective Judgement and Automatic

Knowledge-based detection of bottlenecks

 Forschungszentrum Jülich

 Innovative Computing Laboratory, TN

 Started 1998

 Approach

 Instrument C, C++, and Fortran parallel applications

 Based on MPI, OpenMP, SHMEM, or hybrid

Collect event traces

Search trace for event patterns representing inef f iciencies

Categorize and rank inef f iciencies found

 http://www.fz-juelich.de/jsc/kojak/

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-63

Location

How is the

problem distributed
across the machine?

Call Tree

Where in source code?

In what context?

Performance Property

What problem?

Color Coding How severe is the problem?

Scalasca  TAU VAMPIR  Paraver

X
X

Scalasca
Trace

Analyzer
CUBE
profile

CUBE
Presenter

EPILOG
trace

TAU
−EPILOG

TAU
−PROFILE

TAU
profile

PARAPROF

PerfDMF

TAU
−TRACE

TAU
trace

gprof / mpiP
profile

X

X

X

VAMPIR
Vampir
Trace

OTF / VTF3
trace

TAU
−VT

pattern
trace

X XX

X

X

X

RR

Paraver
PRV
trace

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

CONTENT

 Fall-back

• Simple timers

• Hardware counter measurements

 Overview of some performance tools

• mpiP, TAU, Vampir + Vampirtrace

 Practical Performance Analysis and Tuning

 Challenges and open problems in performance optimization

• Heterogeneous systems

• Automatic performance analysis: KOJAK/Scalasca

• Beyond execution time and f lops

• Extremely large HPC systems
II-65

Beyond Execution Time and Flops

 High performance on today’s architectures requires extremely ef fective

use of the cache and memory hierarchy of the system

Very complex designs

Will get “worse” with advanced multi- and many core chips

 tools for memory performance analysis needed

Current approach:

 Measure cache, memory, TLB events (per execution unit)

 Rarely tell what data object(s) are cause of the problem

Main problem:

 if cause known, what is the f ix?

 Or worse, what is the portable f ix?

 Should be really better lef t to the compiler!

II-66

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

Beyond Execution Time and Flops II

 Do we need tools for I/O performance analysis?

Currently only very few tools available (CrayPat, Pablo I/O, …)

Perhaps scientif ic programmers only need training in parallel I/0

facilities already available today?

 Tools for new programming paradigms?

Obvious next candidate: one-sided communication

 SHMEM, MPI-2 RMA, ARMCI, …

 “Easy” to monitor; intercept calls e.g., using wrapper funcs

 CAF, UPC

 “Harder”; probably need compiler support

Other candidates?

II-67

Beyond Execution Time and Flops III

 Tool (sets and environments) must be able to handle “hybrid” cases!

Message passing (MPI)

Multi-threading (OpenMP, pthreads, …)

 One-sided communication

 (Parallel) I/O

…

 BIGGEST challenge:

Many tools for instrumentation, measurement,

analysis, and visualization

What about (automatic) optimization tools?

II-68

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

CONTENT

 Fall-back

• Simple timers

• Hardware counter measurements

 Overview of some performance tools

• mpiP, TAU, Vampir + Vampirtrace

 Practical Performance Analysis and Tuning

 Challenges and open problems in performance optimization

• Heterogeneous systems

• Automatic performance analysis: KOJAK/Scalasca

• Beyond execution time and f lops

• Extremely large HPC systems
II-69

Increasing Importance of Scaling

 Number of Processors share for TOP 500 Jun 2011

 Average system size: 15,551 cores

 Median system size: 8,556 cores
II-70

1025-2048

2049-4096

4097-8192

8193-16384

> 16384

NProc

2

20

195

224

59

Count

0.4%

4.0%

39.0%

44.8%

11.8%

Share

168 TF

1,177 TF

9,759 TF

15,216 TF

32,556 TF

∑Rmax

Total 500 100% 58,876 TF

0.3%

2.0%

16.6%

25.8%

55.3%

Share

100%

2,632

71,734

1,262,738

2,337,998

4,100,234

∑NProc

7,775.336

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

Increasing Importance of Scaling II

 Number of Processors share for TOP 500 Jun 2001 – Jun 2011

II-71

Projection for a Exascale System*

* From http://www.exascale.org

System

attributes

2010 “2015” “2018” Difference

2010 &

2018

System peak 2 Pflop/s 200 Pflop/s 1 Eflop/sec O(1000)

Power 6 MW 15 MW ~20 MW

System memory 0.3 PB 5 PB 32-64 PB O(100)

Node

performance

125 GF 0.5 TF 7 TF 1 TF 10 TF O(10) –

O(100)

Node memory

BW

25 GB/s 0.1

TB/sec

1 TB/sec 0.4 TB/sec 4 TB/sec O(100)

Node

concurrency

12 O(100) O(1,000) O(1,000) O(10,000) O(100) –

O(1000)

Total

Concurrency

225,000 O(108) O(109) O(10,000)

Total Node

Interconnect

BW

1.5 GB/s 20 GB/sec 200 GB/sec O(100)

MTTI days O(1day) O(1 day) - O(10)

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-73

Extremely large HPC systems

 Many HPC computing centers have systems with some 1000s of PEs

Today’s tools (e.g., gprof , Vampir, TAU) can handle 500–1000 PEs

Measurements give enough insight to optimize for 2000-4000 PEs

 Now: IBM BlueGene, Cray XT5  some 100,000s PEs

Small customer base

Very unique performance problems:

 Why does it work on 16.000 PEs but not for 32.000 PEs?

 Load balance problems amplify performance degradation

 Interesting challenging problem,

but given scarce resources in tools research? …

 Lots of data  need better data mgmt, parallel analysis!?

 Bigger problem: scalable result displays / visualizations

II-74

VampirServer Architecture

Merged

traces

Vampir analysis server

traditional:

monolithic

 sequential

trace 1
trace 2

trace 3
trace N

file system

Internet

large parallel application

monitoring

system

event streams

Vampir visualization client

current

window

full trace

outline

timeline

window

process

worker 1

worker 2

worker m

master

message

passing

parallel

I/O

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

VampirServer:

PEPC, 16384 PEs, Global Timeline

VampirServer:

PEPC, 16384 PEs, Global Timeline (zoomed)

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

VampirServer:

PEPC, 16384 PEs, Message Statistics

VampirServer:

PEPC, 16384 PEs, Cluster Analysis

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

Vampirserver

 Parallel client/server version of Vampir

Can handle much larger trace f iles

Remote visualization possible

 Usage

Start VampirServer daemon

 vngd –n <t> # on f rontend, uses <t> threads

 mpiexec –n <p> vngd # cluster, uses <p> processes

Start the Vampir visualizer (vampir)

 on local system if available

 on f rontend in 2nd shell

then connect client to server, load and analyze trace f ile <exe>.otf

 f inally: vngd-shutdown

The Scalasca Project

 Scalable Analysis of

Large Scale Applications

 Follow-up project to KOJAK http://www.scalasca.org/

 Approach

 Instrument C, C++, and Fortran parallel applications

 Based on MPI, OpenMP, SHMEM, or hybrid

Option 1: scalable call-path profiling

Option 2: scalable event trace analysis

 Collect event traces

 Search trace for event patterns

representing inef f iciencies

 Categorize and rank inef f iciencies found

 Supports MPI 2.2 and basic OpenMP

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

Sequential Analysis Process (KOJAK)

II-81

Multi-level
instrumenter

Instrumented
executable

Source
modules

Instrumented
process

Measurement
library

PAPI

Local event
traces

Global trace

Unification+
Merge R

e
p
o
rt

m

a
n
ip

u
la

ti
o
n

CUBE
Report

explorer

TAU
paraprof

Pattern
report

Sequential
pattern search

Exported
trace

Vampir or
Paraver

Conversion

= Third-party component

Pattern
trace

New Parallel Analysis Process I (Scalasca)

II-82

Multi-level
instrumenter

Instrumented
executable

Instrumented
process

New enhanced
measurement

library
PAPI

R
e
p
o
rt

m

a
n
ip

u
la

ti
o
n

Local event
traces

Source
modules

Pattern
report

Global trace

Pattern
trace

Exported
trace

Sequential
pattern search

Vampir or
Paraver

Unification +
Merge

Conversion

Summary
report

Optimized measurement configuration

CUBE
Report

explorer

TAU
paraprof

unified defs
+ mappings

Merge

= Third-party component

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

Scalasca Summary Analysis sweep3D@294,912

New scalable

machine topology

display

New Parallel Analysis Process II (Scalasca)

II-84

Summary
report

Multi-level
instrumenter

Instrumented
executable R

e
p
o
rt

m

a
n
ip

u
la

ti
o
n

Local event
traces

Source
modules

Optimized measurement configuration

KOJAK

Pattern
report

Global trace

Pattern
trace

Exported
trace

Sequential
pattern search

Vampir or
Paraver

Merge

Conversion

unified defs
+ mappings

Parallel
pattern search

Pattern
report

CUBE
Report

explorer

TAU
paraprofInstrumented

process

New enhanced
measurement

library
PAPI

= Third-party component

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-85

Scalable Automatic Trace Analysis

 Parallel pattern search to address wide traces

 As many processes / threads as used to run the application

 Can run in same batch job!!

 Each process / thread responsible for its “own” local trace data

 Idea: “parallel replay” of application

 Analysis uses communication mechanism that is being analyzed

 Use MPI P2P operation to analyze MPI P2P communication,

use MPI collective operation to analyze MPI collectives, ...

 Communication requirements not signif icantly higher and (of ten

lower) than requirements of target application

 In-memory trace analysis

 Available memory scales with number of processors used

 Local memory usually large enough to hold local trace

II-86

Example: Late Sender

 Sequential approach (EXPERT)

 Scan the trace in sequential order

 Watch out for receive event

 Use links to access other constituents

 Calculate waiting time

 New parallel approach (SCOUT)

 Each process identif ies local constituents

 Sender sends local constituents to receiver

 Receiver calculates waiting time

time

waiting

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

Scalasca Trace Analysis sweep3D@294,912

 10 min

sweep3D

runtime

 11 sec replay

 4 min

trace data

write/read

(576 f iles)

 7.6 TB

buf fered

trace data

 510 billion

events

II-88

TAU ParaProf: 3D Profile, Miranda, 16K PEs

Height and color
can indicate

different metrics

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

[Slide left intentionally blank]

II-89

Performance Tuning: Still a Problem?

Further Documentation

 http://www.vi-hps.org/training/material/

Performance Tools LiveDVD image

 Links to tool websites and documentation

Tutorial slides

