
Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

Principles and Practice of

Application Performance

Measurement and Analysis on

Parallel Systems
Lecture 2: Practical Performance Analysis and Tuning

1. July 2011 | Bernd Mohr

Institute for Advanced Simulation (IAS)

Jülich Supercomputing Centre (JSC)

CONTENT

 Fall-back

• Simple timers

• Hardware counter measurements

 Overview of some performance tools

• mpiP, TAU, Vampir + Vampirtrace

 Practical Performance Analysis and Tuning

 Challenges and open problems in performance optimization

• Heterogeneous systems

• Automatic performance analysis: KOJAK/Scalasca

• Beyond execution time and f lops

• Extremely large HPC systems
II-2

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-3

Fall-back: Home-grown Performance Tools

 If performance analysis and tuning tools are

 not available

 too complex and complicated

it is still possible to do some simple measurements

 Time Measurements

 gettimeofday()

 clock_gettime()

 ...

 Hardware Performance Counter Measurements

PAPI

II-4

Timer: gettimeofday()

 UNIX function

 Returns wall-clock time in seconds and microseconds

 Actual resolution is hardware-dependent

 Base value is 00:00 UTC, January 1, 1970

 Some implementations also return the timezone

#include <sys/time.h>

struct timeval tv;

double walltime; /* seconds */

gettimeofday(&tv, NULL);

walltime = tv.tv_sec + tv.tv_usec * 1.0e-6;

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

Timer: clock_gettime()

 POSIX function

 For clock_id CLOCK_REALTIME

returns wall-clock time in seconds and nanoseconds

 More clocks may be implemented but are not standardized

 Actual resolution is hardware-dependent

II-5

#include <time.h>

struct timespec tv;

double walltime; /* seconds */

Clock_gettime(CLOCK_REALTIME, &tv);

walltime = tv.tv_sec + tv.tv_nsec * 1.0e-9;

II-6

Timer: getrusage()

 UNIX function

 Provides a variety of dif ferent information

 Including user time, system time, memory usage, page faults, etc.

 Information provided system-dependent!

#include <sys/resource.h>

struct rusage ru;

double usrtime; /* seconds */
int memused;

getrusage(RUSAGE_SELF, &ru);
usrtime = ru.ru_utime.tv_sec +

ru.ru_utime.tv_usec * 1.0e-6;

memused = ru.ru_maxrss;

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-7

Timer: Others

 MPI provides portable MPI wall-clock timer

Not required to be consistent/synchronized across ranks!

 Same for OpenMP 2.0 (!) programming

 Hybrid MPI/OpenMP programming?

 Interactions between both standards (yet) undef ined

#include <mpi.h>

double walltime; /* seconds */

walltime = MPI_Wtime();

#include <omp.h>

double walltime; /* seconds */

walltime = omp_get_wtime();

II-8

Timer: Others

 Fortran 90 intrinsic subroutines

 cpu_time()

 system_clock()

 Hardware Counter Libraries

Vendor APIs (PMAPI, HWPC, libhpm, libpfm, libperf , ...)

PAPI

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-9

What Are Performance Counters

 Extra logic inserted in the processor to count specif ic events

 Updated at every cycle

 Strengths

Non-intrusive

Very accurate

 Low overhead

 Weaknesses

Provides only hard counts

Specif ic for each processor

Access is not appropriate for the end user

nor well documented

 Lack of standard on what is counted

II-10

Multi

platform

interface

 Multi-platform interfaces

The Performance API - PAPI

 University of Tennessee, USA

 LIKWID

 University of Erlangen, Germany

Kernel

 Kernel level issues

Handling of overf lows

Thread accumulation

Thread migration

State inheritance

Multiplexing

Overhead

Atomicity

Hardware Counters Interface Issues

Hardware
counters

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-11

Hardware Measurement

 Typical measured events account for:

Functional units status

 Float point operations

 Fixed point operations

 Load/stores

Access to memory hierarchy

Cache coherence protocol events

Cycles and instructions counts

Speculative execution information

 Instructions dispatched

 Branches mispredicted

II-12

Hardware Metrics

 Typical Hardware Counter

Cycles / Instructions

Floating point instructions

 Integer instructions

 Load/stores

Cache misses

TLB misses

 Useful derived metrics

 IPC - instructions per cycle

Float point rate

Computation intensity

 Instructions per load/store

Load/stores per cache miss

Cache hit rate

Loads per load miss

 Loads per TLB miss

 Derived metrics allow users to correlate the behavior of the application to

one or more of the hardware components

 One can def ine threshold values acceptable for metrics and take actions

regarding program optimization when values are below/above the

threshold

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-13

Accuracy Issues

 Granularity of the measured code

 If not suf f iciently large enough, overhead of the counter interfaces

may dominate

 Pay attention to what is not measured:

Out-of-order processors

Sometimes speculation is included

 Lack of standard on what is counted

 Microbenchmarks can help determine accuracy

of the hardware counters

II-14

Hardware Counters Access on Linux

 Linux had not def ined an out-of -the-box interface to access the
hardware counters!

 Linux Performance Monitoring Counters Driver (PerfCtr)
by Mikael Pettersson f rom Uppsala X86 + X86-64

 Needs kernel patching!

 http://user.it.uu.se/~mikpe/linux/perfctr/

Perfmon by Stephane Eranian f rom HP – IA64

 It was being evaluated to be added to Linux

 http://www.hpl.hp.com/research/linux/perfmon/

 Linux 2.6.31

Performance Counter subsystem provides an abstraction of special
performance counter hardware registers

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-15

Utilities to Count Hardware Events

 There are utilities that start a program and at the end of the execution

provide overall event counts

 hpmcount (IBM)

CrayPat (Cray)

 pfmon f rom HP (part of Perfmon for AI64)

 psrun (NCSA)

 cputrack, har (Sun)

 perfex, ssrun (SGI)

 perf (Linux 2.6.31)

II-16

Hardware Counters: PAPI

 Parallel Tools Consortium

(PTools) sponsored project

 Performance Application Programming Interface

 Two interfaces to the underlying counter hardware:

The high-level interface simply provides the ability to start, stop and

read the counters for a specif ied list of events

The low-level interface manages hardware events in user def ined

groups called EventSets

 Timers and system information

 C and Fortran bindings

 Experimental PAPI interface to performance counters support in the

linux 2.6.31 kernel

 http://icl.cs.utk.edu/papi/

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-17

PAPI Machine

Dependent

Substrate

PAPI Low Level
Portable

Layer

Tools

Hardware Performance Counters

Operating System

Kernel ExtensionsMachine

Specific

Layer

PAPI High Level

PAPI Architecture

II-18

PAPI Predefined Events

 Common set of events deemed relevant and useful

for application performance tuning (wish list)

 papiStdEventDefs.h

Accesses to the memory hierarchy, cache coherence protocol

events, cycle and instruction counts, functional unit and pipeline

status

Run PAPI papi_avail utility to determine which predef ined events

are available on a given platform

Semantics may dif fer on dif ferent platforms!

 PAPI also provides access to native events on all supported platforms

through the low-level interface

Run PAPI papi_native_avail utility to determine which predef ined

events are available on a given platform

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-19

PAPI avail Utility

% papi_avail -h
This is the PAPI avail program.
It provides availability and detail information
for PAPI preset and native events. Usage:

papi_avail [options] [event name]
papi_avail TESTS_QUIET

Options:

-a display only available PAPI preset events
-d display PAPI preset event info in detailed format
-e EVENTNAME display full detail for named preset or native event
-h print this help message

-t display PAPI preset event info in tabular format (default)

II-20

PAPI Preset Listing

(derose@jaguar1) 184% papi_avail

LibLustre: NAL NID: 0005dc02 (2)
Lustre: OBD class driver Build Version: 1, info@clusterfs.com

Test case avail.c: Available events and hardware information.

Vendor string and code : AuthenticAMD (2)

Model string and code : AMD K8 (13)
CPU Revision : 1.000000

CPU Megahertz : 2400.000000

CPU's in this Node : 1
Nodes in this System : 1

Total CPU's : 1
Number Hardware Counters : 4

Max Multiplex Counters : 32

Name Code Avail Deriv Description (Note)

PAPI_L1_DCM 0x80000000 Yes Yes Level 1 data cache misses ()
PAPI_L1_ICM 0x80000001 Yes Yes Level 1 instruction cache misses ()

PAPI_L2_DCM 0x80000002 Yes No Level 2 data cache misses ()

PAPI_L2_ICM 0x80000003 Yes No Level 2 instruction cache misses ()
PAPI_L3_DCM 0x80000004 No No Level 3 data cache misses ()

PAPI_L3_ICM 0x80000005 No No Level 3 instruction cache misses ()
PAPI_L1_TCM 0x80000006 Yes Yes Level 1 cache misses ()

PAPI_L2_TCM 0x80000007 Yes Yes Level 2 cache misses ()

PAPI_L3_TCM 0x80000008 No No Level 3 cache misses ()
. . .

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-21

Example: papi_avail –e PAPI_L1_TCM (AMD Opteron)

Event name: PAPI_L1_TCM
Event Code: 0x80000006
Number of Native Events: 4
Short Description: |L1 cache misses|
Long Description: |Level 1 cache misses|
Developer's Notes: ||
Derived Type: |DERIVED_ADD|
Postfix Processing String: ||
|Native Code[0]: 0x40001e1c DC_SYS_REFILL_MOES|
|Number of Register Values: 2|
|Register[0]: 0x20f P3 Ctr Mask|
|Register[1]: 0x1e43 P3 Ctr Code|
|Native Event Description: |Refill from system. Cache bits: Modified Owner Exclusive Shared|

|Native Code[1]: 0x40000037 IC_SYS_REFILL|
|Number of Register Values: 2|
|Register[0]: 0xf P3 Ctr Mask|
|Register[1]: 0x83 P3 Ctr Code|
|Native Event Description: |Refill from system|

|Native Code[2]: 0x40000036 IC_L2_REFILL|
|Number of Register Values: 2|
|Register[0]: 0xf P3 Ctr Mask|
|Register[1]: 0x82 P3 Ctr Code|
|Native Event Description: |Refill from L2|

|Native Code[3]: 0x40001e1b DC_L2_REFILL_MOES|
|Number of Register Values: 2|
|Register[0]: 0x20f P3 Ctr Mask|
|Register[1]: 0x1e42 P3 Ctr Code|
|Native Event Description: |Refill from L2. Cache bits: Modified Owner Exclusive Shared|

II-22

PAPI papi_native_avail Utility (AMD Opteron)

(derose@sleet) 187% papi_native_avail |more
Test case NATIVE_AVAIL: Available native events and hardware information.

Vendor string and code : AuthenticAMD (2)
Model string and code : AMD K8 Revision C (15)
CPU Revision : 10.000000
CPU Megahertz : 2193.406982
CPU's in this Node : 2
Nodes in this System : 1
Total CPU's : 2
Number Hardware Counters : 4
Max Multiplex Counters : 32

The following correspond to fields in the PAPI_event_info_t structure.
Symbol Event Code Count
|Short Description|
|Long Description|
|Derived|
|PostFix|

The count field indicates whether it is a) available (count >= 1) and b) derived
(count > 1)

FP_ADD_PIPE 0x40000000
|Dispatched FPU ops - Revision B and later revisions - Speculative add pipe ops
excluding junk ops|
|Register Value[0]: 0xf P3 Ctr Mask|
|Register Value[1]: 0x100 P3 Ctr Code|

FP_MULT_PIPE 0x40000001
|Dispatched FPU ops - Revision B and later revisions - Speculative multiply pipe
ops excluding junk ops|
|Register Value[0]: 0xf P3 Ctr Mask|
|Register Value[1]: 0x200 P3 Ctr Code|

. . .

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-23

High Level API

 Meant for application programmers wanting

simple but accurate measurements

 Calls the lower level API

 Allows only PAPI preset events

 Eight functions:

PAPI_num_counters

PAPI_start_counters, PAPI_stop_counters

PAPI_read_counters

PAPI_accum_counters

PAPI_flops

PAPI_flips, PAPI_ipc (New in Version 3.x)

 Not thread-safe (Version 2.x)

II-24

Example: Quick and Easy Mflop/s

program papiMflops
parameter (N=1024)
include "f77papi.h"
integer*8 fpins
real*4 realtm, cputime, mflops
integer ierr
real*4 a(N,N)

call random_number(a)
call PAPIF_flops(realtm, cputime, fpins, mflops, ierr)
do j=1,N
do i=1,N
a(i,j)=a(i,j)*a(i,j)

end do
end do
call PAPIF_flops(realtm, cputime, fpins, mflops, ierr)
print *,' realtime: ', realtm, ' cputime: ', cputime
print *,' papi_flops: ', mflops, ' Mflop/s'

end

% ./papiMflops
realtime: 3.640159 cputime: 3.630502
papi_flops: 29.67809 MFlops

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-25

General Events

program papicount
parameter (N=1024)
include "f77papi.h"
integer*8 values(2)
integer events(2), ierr
real*4 a(N,N)

call random_number(a)
events(1) = PAPI_L1_DCM
events(2) = PAPI_L1_DCA
call PAPIF_start_counters(events, 2, ierr)
do j=1,N
do i=1,N
a(i,j)=a(i,j)*a(i,j)

end do
end do
call PAPIF_read_counters(values, 2, ierr)
print *,' L1 data misses : ', values(1)
print *,' L1 data accesses: ', values(2)

end
% ./papicount
L1 data misses : 13140168
L1 data accesses: 500877001

II-26

Low Level API

 Increased ef f iciency and functionality

over the high level PAPI interface

 54 functions

 Access to native events

 Obtain information about

the executable, the hardware, and memory

 Set options for multiplexing

and overf low handling

 System V style sampling (prof il())

 Thread safe

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

CONTENT

 Fall-back

• Simple timers

• Hardware counter measurements

 Overview of some performance tools

• mpiP, TAU, Vampir + Vampirtrace

 Practical Performance Analysis and Tuning

 Challenges and open problems in performance optimization

• Heterogeneous systems

• Automatic performance analysis: KOJAK/Scalasca

• Beyond execution time and f lops

• Extremely large HPC systems
II-27

II-28

MPI Profiling: mpiP

 Scalable, light-weight MPI prof iling library

 Generates detailed text summary of MPI behavior

Time spent at each MPI function callsite

Bytes sent by each MPI function callsite (where applicable)

MPI I/O statistics

Conf igurable traceback depth for function callsites

 Controllable f rom program using MPI_Pcontrol

Allows you to prof ile just one code module or cycle

Allows mpiP prof ile dumps mid-run

 Uses PMPI interface only re-link of application necessary

 http://mpip.sourceforge.net/

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-29

mpiP Text Output Example

@ mpiP
@ Version: 3.1.1
// 10 lines of mpiP and experiment configuration options
// 8192 lines of task assignment to BlueGene topology information

@--- MPI Time (seconds) ---
Task AppTime MPITime MPI%

0 37.7 25.2 66.89
// ...
8191 37.6 26 69.21

* 3.09e+05 2.04e+05 65.88

@--- Callsites: 26 --
ID Lev File/Address Line Parent_Funct MPI_Call
1 0 coarsen.c 542 hypre_StructCoarsen Waitall

// 25 similiar lines

@--- Aggregate Time (top twenty, descending, milliseconds) --------
Call Site Time App% MPI% COV
Waitall 21 1.03e+08 33.27 50.49 0.11
Waitall 1 2.88e+07 9.34 14.17 0.26
// 18 similiar lines

II-30

mpiP Text Output Example (cont.)

@--- Aggregate Sent Message Size (top twenty, descending, bytes) --
Call Site Count Total Avrg Sent%
Isend 11 845594460 7.71e+11 912 59.92
Allreduce 10 49152 3.93e+05 8 0.00
// 6 similiar lines

@--- Callsite Time statistics (all, milliseconds): 212992 ---------
Name Site Rank Count Max Mean Min App% MPI%
Waitall 21 0 111096 275 0.1 0.000707 29.61 44.27
// ...
Waitall 21 8191 65799 882 0.24 0.000707 41.98 60.66
Waitall 21 * 577806664 882 0.178 0.000703 33.27 50.49
// 213,042 similiar lines

@--- Callsite Message Sent statistics (all, sent bytes) -----------
Name Site Rank Count Max Mean Min Sum
Isend 11 0 72917 2.621e+05 851.1 8 6.206e+07
//...
Isend 11 8191 46651 2.621e+05 1029 8 4.801e+07
Isend 11 * 845594460 2.621e+05 911.5 8 7.708e+11
// 65,550 similiar lines

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-31

“Swiss Army Knife” of

Performance Analysis : TAU

 Very portable tool set for instrumentation, measurement

and analysis of parallel multi-threaded applications

 Instrumentation API supports choice

 between prof iling and tracing

 of metrics (i.e., time, HW Counter (PAPI))

 Uses Program Database Toolkit (PDT) for

C, C++, Fortran source code instrumentation

 Supports

 Languages: C, C++, Fortran 77/90, HPF, HPC++, Java, Python

Threads: pthreads, Tulip, SMARTS, Java, Win32, OpenMP

Systems: same as KOJAK + Windows + MacOS + …

 http://tau.uoregon.edu/

 http://www.cs.uoregon.edu/research/pdt/

II-32

TAU Instrumentation

 Flexible instrumentation mechanisms at multiple levels

Source code

 manual

 automatic

 C, C++, F77/90/95 (Program Database Toolkit (PDT))

 OpenMP (directive rewriting with Opari)

Object code

 pre-instrumented libraries (e.g., MPI using PMPI)

 statically-linked and dynamically-loaded (e.g., Python)

Executable code

 dynamic instrumentation (pre-execution) (DynInst)

 virtual machine instrumentation (e.g., Java using JVMPI)

 Support for performance mapping

 Support for object-oriented and generic programming

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-33

TAU Profiling, Large System

II-34

ParaProf –Callgraph View (MFIX)

Box width and
color indicate

different metrics

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

TAU Usage

 Usage:

Specify programming model by setting TAU_MAKEFILE
to one of $<TAU_ROOT>/<arch>/lib/Makefile.tau-*
Examples f rom Linux cluster with Intel compiler and PAPI:

 MPI: Makefile.tau-icpc-papi-mpi-pdt

 OMP: Makefile.tau-icpc-papi-pdt-openmp-opari

 OMPI: Makefile.tau-icpc-papi-mpi-pdt-openmp-opari

Compile and link with

 tau_cc.sh file.c ...

 tau_cxx.sh file.cxx...

 tau_f90.sh file.f90 ...

Execute with real input data

Environment variables control measurement mode

 TAU_PROFILE, TAU_TRACE, TAU_CALLPATH, …

Examine results with paraprof

II-36

Vampirtrace MPI Tracing Tool

 Library for Tracing of MPI and Application Events

Records MPI-1 point-to-point and collective communication

Records MPI–2 I/O operations and RMA operations

Records user subroutines

 Uses the standard MPI prof iling interface

 Usage:

Compile and link with

 vtcc -vt:cc mpicc file.c ...

 vtcxx -vt:cxx mpiCC file.cxx...

 vtf90 -vt:f90 mpif90 file.f90 ...

Execute with real input data (generates <exe>.otf)

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-37

Vampirtrace MPI Tracing Tool

 Versions up to 4.0 until 2003 were commercially

distributed by PALLAS as VampirTrace

 Current status

Commercially distributed by Intel

 Version 5 and up distributed as Intel Trace Collector

 For Intel based platforms only

 http://software.intel.com/en-us/articles/intel-cluster-toolkit/

New open-source VampirTrace version 5 distributed by

Technical University Dresden

 Based on KOJAK’s measurement system

with OTF backend

 http://www.tu-dresden.de/zih/vampirtrace/

 Is also distributed as part of Open MPI

Vampir Event Trace Visualizer

 Visualization and

Analysis of MPI

Programs

 Commercial

product

II-38

 Originally developed by

Forschungszentrum Jülich

 Now all development by

Technical University

Dresden

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-39

Vampir Event Trace Visualizer

 Versions up to 4.0 until 2003 were commercially

distributed by PALLAS as Vampir

 Current status

Commercially distributed by Intel

 Version 4 distributed as Intel Trace Analyzer

 For Intel based platforms only

 Intel meanwhile released own new version (ITA V6 and up)

 http://software.intel.com/en-us/articles/intel-cluster-toolkit/

Original Vampir (and new VNG) commercially distributed by

Technical University Dresden

 http://www.vampir.eu

II-40

Vampir: Time Line Diagram

 Functions

organized

into groups

 coloring

by group

 Message

lines can

be colored

by tag or

size

 Information about states, messages, collective and I/O operations

available through clicking on the representation

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

Vampir: Process and Counter Timelines

 Process

timeline

show

call stack

nesting

 Counter

timelines

for

hardware

or

sof tware

counters

II-41

II-42

Vampir: Execution Statistics

 Aggregated

prof iling

information:

execution time,

number of calls,

inclusive/exclusive

 Available for all /

any group (activity)

or all routines (symbols)

 Available for any part

of the trace

 selectable through time line diagram

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

Vampir: Process Summary

 Execution statistics

over all processes

for comparison

 Clustering mode

available for large

process counts

II-43

II-44

Vampir: Communication Statistics

 Byte and message count,
min/max/avg message length
and min/max/avg bandwidth

for each process pair

 Message length

statistics

 Available for any part
of the trace

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

Other Profiling Tools

 gprof

Available on many systems

Compiler instrumentation (invoked via –g –pg)

 FPMPI-2 (ANL)

 http://www.mcs.anl.gov/fpmpi/

MPI prof iler (invoked via re-linking)

 special: Optionally identif ies synchronization time

 single output f ile: count, sum, avg, min, max over ranks

 ThreadSpotter (Rogue Wave) [commercial product]

 http://www.roguewave.com/products/threadspotter.aspx

Sampling-based memory and thread performance analyzer

Works on un-modif ied, optimized executables

Other Profiling Tools II

 ompP (UC Berkeley)

 http://www.ompp-tool.com

OpenMP prof iler (invoked via OPARI source instrumentation)

 HPCToolkit (Rice University)

 http://www.hpctoolkit.org

Multi-platform sampling-based callpath prof iler

Works on un-modif ied, optimized executables

 Open|SpeedShop (Krell Insitute with support of LANL, SNL, LLNL)

 http://www.openspeedshop.org

Comprehensive performance analysis environment

Uses binary instrumentation (via DynInst)

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

Other Tracing Tools

 MPE / Jumpshot (ANL)

Part of MPICH2

 Invoked via re-linking

Only supports MPI P2P and collectives; SLOG2 trace format

 Extrae / Paraver (BSC/UPC)

 http://www.bsc.es/paraver

Measurement system (Extrae) and visualizer (Paraver)

Powerful f ilter and summarization features

Very conf igurable visualization

CONTENT

 Fall-back

• Simple timers

• Hardware counter measurements

 Overview of some performance tools

• mpiP, TAU, Vampir + Vampirtrace

 Practical Performance Analysis and Tuning

 Challenges and open problems in performance optimization

• Heterogeneous systems

• Automatic performance analysis: KOJAK/Scalasca

• Beyond execution time and f lops

• Extremely large HPC systems
II-48

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-49

Practical Performance Analysis and Tuning

 Successful tuning is combination of

Right algorithm and libraries

Compiler f lags and pragmas / directives

(Learn and use them)

THINKING

 Measurement is better than reasoning / intuition (= guessing)

To determine performance problems

To validate tuning decisions / optimizations

(af ter each step!)

II-50

Practical Performance Analysis and Tuning

 It is easier to optimize a slow correct program

than to debug a fast incorrect one

 Debugging before Tuning

 Nobody really cares how fast you can compute

the wrong answer

 The 80/20 rule

Program spents 80% time in 20% of code

Programmer spends 20% ef fort to get 80% of the total speedup

possible in the code

 Know when to stop!

 Don’t optimize what doesn’t matter

 Make the common case fast

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-51

Typical Performance Analysis Procedure

1. Do I have a performance problem at all?

 Time / hardware counter measurements

 Speedup and scalability measurements

2. What is the main bottleneck (computation/communication...) ?

 Flat prof iling (sampling / prof)

3. Where is the main bottleneck?

 Call graph prof iling (gprof)

 Detailed (basic block) prof iling

4. Why is it there?

 Hardware counters analysis

 Trace selected parts to keep trace f iles manageable

5. Does my code have scalability problems?

 Load Imbalance analysis

 Prof ile code for typical small and large processor count

 Compare prof iles function-by-function

CONTENT

 Fall-back

• Simple timers

• Hardware counter measurements

 Overview of some performance tools

• mpiP, TAU, Vampir + Vampirtrace

 Practical Performance Analysis and Tuning

 Challenges and open problems in performance optimization

• Heterogeneous systems

• Automatic performance analysis: KOJAK/Scalasca

• Beyond execution time and f lops

• Extremely large HPC systems
II-52

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-53

Heterogenous Systems

 Current trend to use hardware acceleration to speedup calculations

 IBM Cell (e.g. LANL Roadrunner)

Clearspead

FPGA-based acceleration

GPU-based acceleration

 In the long run: new programming models needed

 Very little to not existing tool support

Tool research opportunities!

GPU Performance Tools

 CUDA prof iler

 TAU

CUDA + OpenCL prof iling (host side)

 VampirTrace

CUDA tracing (host side)

II-54

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

Current Related Projects

Hybrid Programming for

Heterogeneous Architectures

EU ITEA2 funded project 2010 – 2013

Successor of successful ParMA project

 25 partners for France, Germany, Spain, Sweden

including Bull, TUD, BSC, USQV, JSC, Acumem

Develop programming models and tools

Evaluation with large set of industrial codes

//H4H

CONTENT

 Fall-back

• Simple timers

• Hardware counter measurements

 Overview of some performance tools

• mpiP, TAU, Vampir + Vampirtrace

 Practical Performance Analysis and Tuning

 Challenges and open problems in performance optimization

• Heterogeneous systems

• Automatic performance analysis: KOJAK/Scalasca

• Beyond execution time and f lops

• Extremely large HPC systems
II-56

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

“A picture is worth 1000 words…”

II-57

 MPI class example: Send messages in a ring program

“What about 1000’s of pictures?”

(with 100’s of menu options)

II-58

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-59

Example Automatic Analysis: Late Sender

II-60

Example Automatic Analysis (2): Wait at NxN

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-61

Basic Idea Automatic Performance Analysis

Huge amount of
Measurement data

Relevant
problems
and data

 For non-standard /

tricky cases (10%)

 For expert users

 For standard cases (90% ?!)

 For “normal” users

 Starting point for experts

 More productivity for performance analysis process!

 “Traditional” Tool Automatic Tool

Simple:
1 screen +
2 commands +

3 panes

Pattern
Analyzer

Guidance

II-62

The KOJAK Project

 Kit for Objective Judgement and Automatic

Knowledge-based detection of bottlenecks

 Forschungszentrum Jülich

 Innovative Computing Laboratory, TN

 Started 1998

 Approach

 Instrument C, C++, and Fortran parallel applications

 Based on MPI, OpenMP, SHMEM, or hybrid

Collect event traces

Search trace for event patterns representing inef f iciencies

Categorize and rank inef f iciencies found

 http://www.fz-juelich.de/jsc/kojak/

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-63

Location

How is the

problem distributed
across the machine?

Call Tree

Where in source code?

In what context?

Performance Property

What problem?

Color Coding How severe is the problem?

Scalasca TAU VAMPIR Paraver

X
X

Scalasca
Trace

Analyzer
CUBE
profile

CUBE
Presenter

EPILOG
trace

TAU
−EPILOG

TAU
−PROFILE

TAU
profile

PARAPROF

PerfDMF

TAU
−TRACE

TAU
trace

gprof / mpiP
profile

X

X

X

VAMPIR
Vampir
Trace

OTF / VTF3
trace

TAU
−VT

pattern
trace

X XX

X

X

X

RR

Paraver
PRV
trace

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

CONTENT

 Fall-back

• Simple timers

• Hardware counter measurements

 Overview of some performance tools

• mpiP, TAU, Vampir + Vampirtrace

 Practical Performance Analysis and Tuning

 Challenges and open problems in performance optimization

• Heterogeneous systems

• Automatic performance analysis: KOJAK/Scalasca

• Beyond execution time and f lops

• Extremely large HPC systems
II-65

Beyond Execution Time and Flops

 High performance on today’s architectures requires extremely ef fective

use of the cache and memory hierarchy of the system

Very complex designs

Will get “worse” with advanced multi- and many core chips

 tools for memory performance analysis needed

Current approach:

 Measure cache, memory, TLB events (per execution unit)

 Rarely tell what data object(s) are cause of the problem

Main problem:

 if cause known, what is the f ix?

 Or worse, what is the portable f ix?

 Should be really better lef t to the compiler!

II-66

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

Beyond Execution Time and Flops II

 Do we need tools for I/O performance analysis?

Currently only very few tools available (CrayPat, Pablo I/O, …)

Perhaps scientif ic programmers only need training in parallel I/0

facilities already available today?

 Tools for new programming paradigms?

Obvious next candidate: one-sided communication

 SHMEM, MPI-2 RMA, ARMCI, …

 “Easy” to monitor; intercept calls e.g., using wrapper funcs

 CAF, UPC

 “Harder”; probably need compiler support

Other candidates?

II-67

Beyond Execution Time and Flops III

 Tool (sets and environments) must be able to handle “hybrid” cases!

Message passing (MPI)

Multi-threading (OpenMP, pthreads, …)

 One-sided communication

 (Parallel) I/O

…

 BIGGEST challenge:

Many tools for instrumentation, measurement,

analysis, and visualization

What about (automatic) optimization tools?

II-68

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

CONTENT

 Fall-back

• Simple timers

• Hardware counter measurements

 Overview of some performance tools

• mpiP, TAU, Vampir + Vampirtrace

 Practical Performance Analysis and Tuning

 Challenges and open problems in performance optimization

• Heterogeneous systems

• Automatic performance analysis: KOJAK/Scalasca

• Beyond execution time and f lops

• Extremely large HPC systems
II-69

Increasing Importance of Scaling

 Number of Processors share for TOP 500 Jun 2011

 Average system size: 15,551 cores

 Median system size: 8,556 cores
II-70

1025-2048

2049-4096

4097-8192

8193-16384

> 16384

NProc

2

20

195

224

59

Count

0.4%

4.0%

39.0%

44.8%

11.8%

Share

168 TF

1,177 TF

9,759 TF

15,216 TF

32,556 TF

∑Rmax

Total 500 100% 58,876 TF

0.3%

2.0%

16.6%

25.8%

55.3%

Share

100%

2,632

71,734

1,262,738

2,337,998

4,100,234

∑NProc

7,775.336

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

Increasing Importance of Scaling II

 Number of Processors share for TOP 500 Jun 2001 – Jun 2011

II-71

Projection for a Exascale System*

* From http://www.exascale.org

System

attributes

2010 “2015” “2018” Difference

2010 &

2018

System peak 2 Pflop/s 200 Pflop/s 1 Eflop/sec O(1000)

Power 6 MW 15 MW ~20 MW

System memory 0.3 PB 5 PB 32-64 PB O(100)

Node

performance

125 GF 0.5 TF 7 TF 1 TF 10 TF O(10) –

O(100)

Node memory

BW

25 GB/s 0.1

TB/sec

1 TB/sec 0.4 TB/sec 4 TB/sec O(100)

Node

concurrency

12 O(100) O(1,000) O(1,000) O(10,000) O(100) –

O(1000)

Total

Concurrency

225,000 O(108) O(109) O(10,000)

Total Node

Interconnect

BW

1.5 GB/s 20 GB/sec 200 GB/sec O(100)

MTTI days O(1day) O(1 day) - O(10)

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-73

Extremely large HPC systems

 Many HPC computing centers have systems with some 1000s of PEs

Today’s tools (e.g., gprof , Vampir, TAU) can handle 500–1000 PEs

Measurements give enough insight to optimize for 2000-4000 PEs

 Now: IBM BlueGene, Cray XT5 some 100,000s PEs

Small customer base

Very unique performance problems:

 Why does it work on 16.000 PEs but not for 32.000 PEs?

 Load balance problems amplify performance degradation

 Interesting challenging problem,

but given scarce resources in tools research? …

 Lots of data need better data mgmt, parallel analysis!?

 Bigger problem: scalable result displays / visualizations

II-74

VampirServer Architecture

Merged

traces

Vampir analysis server

traditional:

monolithic

 sequential

trace 1
trace 2

trace 3
trace N

file system

Internet

large parallel application

monitoring

system

event streams

Vampir visualization client

current

window

full trace

outline

timeline

window

process

worker 1

worker 2

worker m

master

message

passing

parallel

I/O

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

VampirServer:

PEPC, 16384 PEs, Global Timeline

VampirServer:

PEPC, 16384 PEs, Global Timeline (zoomed)

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

VampirServer:

PEPC, 16384 PEs, Message Statistics

VampirServer:

PEPC, 16384 PEs, Cluster Analysis

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

Vampirserver

 Parallel client/server version of Vampir

Can handle much larger trace f iles

Remote visualization possible

 Usage

Start VampirServer daemon

 vngd –n <t> # on f rontend, uses <t> threads

 mpiexec –n <p> vngd # cluster, uses <p> processes

Start the Vampir visualizer (vampir)

 on local system if available

 on f rontend in 2nd shell

then connect client to server, load and analyze trace f ile <exe>.otf

 f inally: vngd-shutdown

The Scalasca Project

 Scalable Analysis of

Large Scale Applications

 Follow-up project to KOJAK http://www.scalasca.org/

 Approach

 Instrument C, C++, and Fortran parallel applications

 Based on MPI, OpenMP, SHMEM, or hybrid

Option 1: scalable call-path profiling

Option 2: scalable event trace analysis

 Collect event traces

 Search trace for event patterns

representing inef f iciencies

 Categorize and rank inef f iciencies found

 Supports MPI 2.2 and basic OpenMP

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

Sequential Analysis Process (KOJAK)

II-81

Multi-level
instrumenter

Instrumented
executable

Source
modules

Instrumented
process

Measurement
library

PAPI

Local event
traces

Global trace

Unification+
Merge R

e
p
o
rt

m

a
n
ip

u
la

ti
o
n

CUBE
Report

explorer

TAU
paraprof

Pattern
report

Sequential
pattern search

Exported
trace

Vampir or
Paraver

Conversion

= Third-party component

Pattern
trace

New Parallel Analysis Process I (Scalasca)

II-82

Multi-level
instrumenter

Instrumented
executable

Instrumented
process

New enhanced
measurement

library
PAPI

R
e
p
o
rt

m

a
n
ip

u
la

ti
o
n

Local event
traces

Source
modules

Pattern
report

Global trace

Pattern
trace

Exported
trace

Sequential
pattern search

Vampir or
Paraver

Unification +
Merge

Conversion

Summary
report

Optimized measurement configuration

CUBE
Report

explorer

TAU
paraprof

unified defs
+ mappings

Merge

= Third-party component

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

Scalasca Summary Analysis sweep3D@294,912

New scalable

machine topology

display

New Parallel Analysis Process II (Scalasca)

II-84

Summary
report

Multi-level
instrumenter

Instrumented
executable R

e
p
o
rt

m

a
n
ip

u
la

ti
o
n

Local event
traces

Source
modules

Optimized measurement configuration

KOJAK

Pattern
report

Global trace

Pattern
trace

Exported
trace

Sequential
pattern search

Vampir or
Paraver

Merge

Conversion

unified defs
+ mappings

Parallel
pattern search

Pattern
report

CUBE
Report

explorer

TAU
paraprofInstrumented

process

New enhanced
measurement

library
PAPI

= Third-party component

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

II-85

Scalable Automatic Trace Analysis

 Parallel pattern search to address wide traces

 As many processes / threads as used to run the application

 Can run in same batch job!!

 Each process / thread responsible for its “own” local trace data

 Idea: “parallel replay” of application

 Analysis uses communication mechanism that is being analyzed

 Use MPI P2P operation to analyze MPI P2P communication,

use MPI collective operation to analyze MPI collectives, ...

 Communication requirements not signif icantly higher and (of ten

lower) than requirements of target application

 In-memory trace analysis

 Available memory scales with number of processors used

 Local memory usually large enough to hold local trace

II-86

Example: Late Sender

 Sequential approach (EXPERT)

 Scan the trace in sequential order

 Watch out for receive event

 Use links to access other constituents

 Calculate waiting time

 New parallel approach (SCOUT)

 Each process identif ies local constituents

 Sender sends local constituents to receiver

 Receiver calculates waiting time

time

waiting

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

Scalasca Trace Analysis sweep3D@294,912

 10 min

sweep3D

runtime

 11 sec replay

 4 min

trace data

write/read

(576 f iles)

 7.6 TB

buf fered

trace data

 510 billion

events

II-88

TAU ParaProf: 3D Profile, Miranda, 16K PEs

Height and color
can indicate

different metrics

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

[Slide left intentionally blank]

II-89

Performance Tuning: Still a Problem?

Further Documentation

 http://www.vi-hps.org/training/material/

Performance Tools LiveDVD image

 Links to tool websites and documentation

Tutorial slides

